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Abstract— A panoptic perception-based generative adversar-
ial network for thermal-to-color image translation is proposed
to demonstrate its potential as an image sequence enhancement
for monocular visual odometry in blurry and low-resolution
thermal vision. The pre-trained panoptic segmentation model is
utilized to obtain the panoptic perception (i.e., bounding boxes,
categories, and masks) of the image scene to guide the alignment
between the object content codes of the original thermal domain
and panoptic-level style codes sampled from the target color
style space. A feature masking module further refines the style-
aligned object representations for sharpening object boundaries
to synthesize higher fidelity translated color image sequences.
The extensive experimental evaluation shows that our method
outperforms other thermal-to-color image translation methods
in the image quality of translated color images. We demonstrate
that the enhanced image sequences significantly improve the
performance of monocular visual odometry compared with dif-
ferent competing methods including thermal image sequences.

I. INTRODUCTION

Visual odometry (VO) and simultaneous localization and
mapping (SLAM) are attractive areas because they are used
flexibly in robotics, AR/VR and autonomous driving. Partic-
ularly, the monocular direct method VO can use the image
sequence frames acquired by RGB cameras to achieve the
motion trajectory estimation and semi-dense 3D reconstruc-
tion, it relieves the dependence on the extra sensors. How-
ever, tracking the RGB camera pose in poorly–illuminated
conditions (e.g., night scenes) and in the presence of airborne
obscurants (e.g., dust, fog and smoke) is still a challenge
for current VO methods. In contrast, thermal cameras (e.g.,
Long Wave Infrared sensors) are considered to be one of the
options that can see through the above situations.

However, because both feature-based methods [1], [2] and
direct methods [3], [4] rely on image gradient-based key
point extraction, which provides fewer high-quality points
in thermal vision, as shown in Fig. 1 (a) middle row.
Moreover, the low resolution and blurry attributions [5] of
thermal images result in unsatisfactory performance in VO
compared with color images, i.e., the estimated trajectory
deviates significantly from Ground Truth as shown in Fig. 1
(a) bottom row. Inspired by the multi-frame GANs [6]
that transformed night images to day images to improve
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Fig. 1. A novel thermal-to-color image translation model enhances thermal
vision for monocular VO. Our model translates consecutive low-resolution
and blurry thermal images (a) to enhanced fine-grained color images (b)
while preserving temporal and frame consistency. In the middle row, the
extracted gradient-based key points by the state-of-the-art direct method
VO Monocular Direct Sparse Odometry (DSO) are presented, (a) have
significantly more than (b). In the bottom row, the estimated trajectory
comparison is also shown. Due to the low image gradient, blurry and
low resolution, typical VO such as DSO cannot achieve good tracking
performance in thermal scenes. With the translated fine-grained color images
from our method, the VO performance of DSO is notably improved.

resolution and alleviate the blurry problem for an impressive
gain on VO performance. We aim to translate low-resolution
and blurry thermal images to fine-grained color images to
obtain a better VO performance compared with the traditional
methods which directly use thermal image sequences in VO.

The conventional image translation approaches (e.g., MU-
NIT [7], BicycleGAN [8], TICCGAN [9]) extract image
representation of input thermal image as content codes and
combine sampled style codes from color space to generate
the target color image. This is difficult to generate color
images with fine-grained objects, whose sharp boundaries



are crucial to extract gradient-based key points for VO. To
achieve this goal, the object’s information of the input image
needs to be sufficiently perceived as prior knowledge for
tracking the style transformation of each object in the image
translation process. In this paper, we propose a learning-
based sequence enhancement method for monocular VO
methods. We utilize the panoptic segmentation [10] model to
obtain panoptic perception as prior knowledge (i.e., bounding
boxes, categories, and masks). We use Region of Interest
Align (RoIAlign) [11] to extract the object representations
as object content codes. The object style codes are sampled
from the color style space and aligned with the content
codes for fine-grained image generation. A feature masking
module refines object representations for sharpening object
boundaries. The fine-grained generated color images can
extract more gradient-based key points to estimate more
accurate trajectories (as shown in Fig. 1 (b) middle and
bottom rows) for improving VO performance.

II. RELATED WORK

A. Thermal-to-Color Image Translation

Thermal-to-color image translation is to transform images
of the thermal spectrum domain to the color domain, it
only changes the image style but keeps the scene content
unchanged. TIR2LAB [12] incorporated a Canny edge de-
tector for the training of the network. TICCGAN [9] added
perceptual loss [13] and total variation loss [14] to optimize
networks. TIC-Pan [15] utilized a pan-sharpening method to
merge low frequency with high-frequency representations.
Compared to Pix2Pix [16] and CycleGAN [17], Pix2PixHD
[18] can generate high resolution images by adopted a multi-
scale discriminator and coarse2fine generator. PGGAN [19]
utilized a progressive growth strategy to synthesize images
from low to high resolution. AGGAN [20] and U-GAT-IT
[21] extracted attention regions from the input image as
image structure guidance to localize important content for a
high-quality result. However, the above methods are difficult
to translate low-resolution and blurry thermal images to fine-
grained color images for satisfactory VO performance.

B. Object-Level Image Translation

The object-level image translation combines object percep-
tion (bounding boxes or masks) to generate sharper object
boundaries. Instagan [22] incorporated a set of instance
attributes for image translation. DA-GAN [23] learned a
deep attention encoder to enable the instance-aware cor-
respondences to be discovered consequently. SCGAN [24]
and SalG-GAN [25] regarded saliency maps as an object
perception. Shen et al.[26], Su et al.[27] and Chen et
al.[28] combined an instance-aware feature with image-aware
feature for higher quality image translation. However, they
only use the instance-aware objects ‘thing’ without consid-
ering background semantic regions ‘stuff’. Dundar et al.[29]
proved panoptic perception makes generated images have
higher fidelity and tiny objects in more detail. Therefore,
we extract panoptic perception (‘thing’ + ‘stuff’) to make
sampled panoptic-level style codes combine corresponding

content codes for a higher fidelity panoptic-level thermal-to-
color image translation.

C. Visual Odometry (VO)

Feature-based methods [1], [2] use feature matching to
estimate the camera poses via minimizing the re-projection
error. Direct methods [3], [4] directly optimize the pho-
tometric error without feature descriptors. In order to im-
prove VO performance in challenging poorly conditions,
NID-SLAM [30] replace intensities with a newly designed
metric considering entropies in the frame. Alismail et al.[31]
proposed a direct VO method with binary feature descriptor
to enhance a poor light environment. Meanwhile, a few
learning-based methods have been also proposed compared
to the classical methods. Gomez et al.[32] use an LSTM-
based neural network to enhance images and evaluated
different methods on real-world static scenes. Multi-frame
GANs [6] transformed low light images to refined images
for a satisfactory SLAM performance. Compared to above
methods, we use a panoptic-level thermal-to-color image
translation neural network to generate fine-grained color
images from thermal images. We validate results on DSO
for VO performance comparison of extracted key points and
estimated trajectories.

III. METHODOLOGY

A. Architecture

Our architecture is built upon a generator and discrimina-
tor. We deploy a supervised learning setting via the paired
thermal and color images from the KAIST-MS dataset [33].

1) Generator: As illustrated in Fig. 2, the input thermal
image is extracted by a backbone module consisting of
down-sampling residual blocks for obtaining image con-
tent codes Cimg (size 32 × 32, dimension 256). Let P ={
(categoryi,bboxi,maski)

m
i=1

}
be a panoptic perception con-

sisting of categories, bounding boxes, and masks, where
m is the number of objects perceived from the pre-trained
panoptic segmentation model and categoryi ∈ CAT (CAT
defines 134 categories in the COCO-Panoptic dataset [10],
here ‘thing’ has 80 categories and ‘stuff’ has 54 categories).
Cimg is cropped by RoIAlign [11] through object bound-
ing boxes of P(bboxi)

m
i=1 into object content codes Cob j ={

Cob ji

}m
i=1 (size 8×8, dimension 128). Define Zimg as image-

level style codes (dimension 256) and Zob j =
{

Zob ji

}m
i=1

as panoptic-level style codes (dimension 64), which are
randomly sampled from normal distribution. The goal of the
generator is to learn a generation function G(·), which is
capable of translating thermal image t to a generated color
image c

′
via a given (Zimg,Zob j):

c
′
= G(t|Zimg,Zob j;ΘG) (1)

where ΘG are the parameters of the generation function.
We use a multilayer perceptron (MLP) network to pro-

cess the panoptic-level style codes Zob j =
{

Zob ji

}m
i=1 to

dynamically generate the parameters y= (yγ ,yβ ) of Adaptive
Instance Normalization (AdaIN) [34] layers, then Cob j are
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Fig. 2. Overview of our generator. The thermal image is extracted by the backbone consisting of down-sampling residual blocks to image-level
representations, which are cropped by RoIAlign via bounding boxes from the panoptic perception of the pre-trained model to panoptic-level representations.
Both representations are aligned with sampled color style codes from normal distribution. The redundant background information of panoptic-level style-
aligned codes is removed by feature masking, the results are re-integrated by cLSTM to combine with image-level representations for color image generation.
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Fig. 3. The feature masking module removes the redundant background
information outside the object contours from the object feature maps.

processed by the residual blocks with AdaIN layers. The
parameters of AdaIN layers fuse panoptic-level style with
content to translate the different objects in the target image.

AdaIN(xi,y) = yγ,i

(
xi −µ(xi)

σ(xi)

)
+ yβ ,i (2)

where xi is each feature map of Cob j, which is nor-
malized separately and then scaled and biased using the
corresponding scalar components from style y. The µ and
σ are channel-wise mean and standard deviation, γ and β

are AdaIN parameters generated from Zob j. We obtained the
style-aligned object representation Oob j =

{
Oob ji

}m
i=1.

Oob j = AdaIN(Cob j,Zob j) (3)

Image-level style codes Zimg are also processed by MLP
to generate AdaIN parameters, which fuse the image-level
style with image content codes Cimg by residual blocks with
AdaIN layers to obtain a hidden representation Himg.

As illustrated in Fig. 3, in our feature masking module,
Oob j contains m object feature maps

{
Oob ji

}m
i=1. Since

the object bounding boxes P(bboxi)
m
i=1 define the size and

location of each object in the original image, we firstly affine
transform each object feature maps Oob ji into its correspond-
ing original bounding box, secondly we do zero padding
outside each bounding box in the image to obtain new object
feature maps Bob j =

{
Bob ji

}m
i=1. To remove the redundant

background information outside the object contour, we fur-
ther refine Bob j via object masks M = P(maski)

m
i=1 for more

precise object boundaries. Compared with the Convolutional

Object-Level
Hinge Loss

Backbone

RoIAlign

AvgPool FC Image-Level
Hinge Loss

Flatten sum

����  

����  

sum

����  

...

FC

����  

�����  

FC

λ

Translated
Color

Ground Truth

Fig. 4. Overview of our discriminator. The backbone and RoIAlign
extract translated or ground truth image to image-level and panoptic-
level representations, which are pooled and flattened respectively, and then
processed by different fully connected (FC) layers to a fusion hinge loss
consisting of image-level realness score simg and object-level realness scores
sreal with category projection scores scls.

Feature Masking (CFM) layer [35] using the pixel projection
method, after affine transformation the size of each feature
map in Bob j is the same as masks M, therefore we only need
to align Bob j and M along the category sequence of 1∼m and
multiply to mask the values outside of object contour. Finally,
we can obtain finer object feature maps Fob j =

{
Fob ji

}m
i=1.

Fob j = Bob j ·M (4)

We feed Fob j into three layers convolutional Long-Short-
Term Memory (cLSTM) module, the number of channels
in each layer is 256, 128, 128, respectively. The cLSTM
is a multi-layer convolutional LSTM network, it can better
preserve spatial information. It integrates each object feature
maps

{
Fob ji

}m
i=1 along object sequence of 1 ∼ m to obtain

fused hidden representation Hob j. We concatenate Hob j with
Himg as H, which is up-sampled by decoder consisting of
up-sampling residual blocks to synthesize color image c

′
.

2) Discriminator: As illustrated in Fig. 4, our discrim-
inator consists of image-level and object-level classifiers.
Similar to generator, the translated image is encoded by
the backbone as image content codes Cimg, which is refined
by RoIAlign [11] as object content codes Cob j =

{
Cob ji

}m
i=1

via bounding boxes P(bboxi)
m
i=1. The image-level classifier

consists of a global average pooling and one-output fully



connected (FC) layer to process Cimg to obtain a scalar
realness score simg. The object-level classifier consists of a
flatten layer and two FC layers. One FC layer processes
Cob j to compute a realness score for each object, denoted
by sreal =

{
sreali

}m
i=1. Another FC layer computes a category

projection score [36], [37], [38] for each object, denoted by
scls =

{
sclsi

}m
i=1, which is the inner product between category

embedding (transforming each category of P(categoryi)
m
i=1

to a corresponding latent vector sampled from normal distri-
bution) and linear projection (using a FC layer) of down-
sampled Cob j. Therefore, the overall object-level loss of
an object is sob ji = sreali + sclsi . The discriminator will be
denoted by D(·,ΘD) with parameters ΘD.

(simg,sob ji , · · · ,sob jm) = D(I;ΘD) (5)

Given an image I (ground truth c or generated c
′
), the

discriminator computes the prediction score for the image
and the average scores for objects.

B. Loss Function

The full objective comprises three loss functions:
Firstly, we utilize image-level and object-level fusion

hinge version [39] of standard adversarial loss [40] to train
(ΘG,ΘD),

lk(I) =

{
min(0,−1+ sk); if I is ground truth c

min(0,−1− sk); if I is generated c
′ (6)

where k ∈ {img,ob ji, · · · ,ob jm}. The overall loss is l(I) =

λ · limg(I) +
1
m

∑
m
i=1 lob ji(I) with trade-off parameter λ (1.0

used in experiment) in fusion hinge losses between image-
level and object-level. We define the losses for the discrim-
inator and generator respectively [38],

Ladv(ΘD,ΘG) =− E
(I) pall(I)

[l(I)]

Ladv(ΘG,ΘD) =− E
(I) p f ake(I)

[D(I;ΘD)]
(7)

where minimizing Ladv(ΘD,ΘG) tries to tell the discrim-
inator to distinguish ground truth and translated images,
but minimizing Ladv(ΘG,ΘD) tries to fool discriminator
by translating fine-grained images. pall(I) represents all of
ground truth and translated images, and p f ake(I) represents
translated images.

Secondly, we use Limg
1 =

∥∥∥c
′ − c

∥∥∥
1

to penalize the L1

difference between the translated image c
′

and ground truth
c, ∥1 calculates the L1 norm.

Thirdly, we use Lp to alleviate the problem that translated
images are prone to producing distorted textures [18]. It is
beneficial to keep textures in high-level space through the
ReLU activation of the VGG-19 network [13],

Lp = ∑k
1

CkHkWk

Hk

∑
i=1

Wk

∑
j=1

∥∥∥φk(c
′
)i, j −φk(c)i, j

∥∥∥
1

(8)

where φk(·) represents feature representations of the kth
max-pooling layer in VGG-19 network, and CkHkWk repre-
sents the size of feature representations.

Therefore, the final loss function is defined as:

Ltotal = λ1Ladv +λ2Limg
1 +λ3Lp (9)

where λi are the parameters balancing different losses.

C. Implementation Details
As for Ltotal, we empirically set λ1 ∼ λ3 to 0.1, 1, 10,

respectively. Model parameters were initialized using the
Orthogonal Initialization method [41]. The spectral normal-
ization [42] is used in the layers of both generator and
discriminator to stabilize the GANs training. We used leaky-
ReLU with a slope of 0.2 in the activation function. We
trained our model using the Adam optimizer [43] with β1 = 0
and β2 = 0.9. The learning rates were set to 10−4 for the
generator and 0.005 for the discriminator. We set 400,000
iterations for training on four NVIDIA V100 GPUs.

IV. EXPERIMENTS AND RESULTS

A. Dataset and Training
We trained and evaluated the thermal-to-color image

translation model using the KAIST-MS dataset [33], which
contains 11,610 thermal-color image pairs for training and
2,541 thermal images for evaluation. For panoptic perception
in the training, we perceive it from the paired color images
via pre-trained Panoptic FPN model [44] on COCO-Panoptic
dataset [10]; in the inference, it is perceived from input
images via pre-trained Panoptic FPN model on a compact
our contributed dataset of thermal panoptic segmentation, the
source data1 are the pairs of thermal and color images from
partial KAIST-MS [33] dataset.

B. Evaluation Setting
We compared results of different methods in aspects of

image quality and VO performance. For baselines, MUNIT
[7], BicycleGAN [8] and TICCGAN [9] belong to image-
level image translation; SCGAN [24] and INIT [26] belong
to object-level image translation. For an adequately fair
comparison, we add panoptic perception to image-level base-
lines, where panoptic perception (as an additional features
channel) is concatenated with image features for training,
hence we call them MUNIT+Seg, BicycleGAN+Seg and
TICCGAN+Seg. For metrics, we chose Inception Score (IS)
[45], Fréchet Inception Distance (FID) [46] and Diversity
Score (DS) instead of Peak signal-to-noise ratio (PSNR)
and structure similarity index (SSIM) [47] to evaluate image
quality because traditional PSNR and SSIM deviate from
human visual perception [48] for images generated by GANs
learning models. We adopted Absolute Pose Error (APE) to
evaluate VO performance, it consists of the Median Absolute
Translational Error trel and Absolute Rotational Error rrel
as proposed in the KITTI Odometry benchmark [49]. We
run the DSO [4] method and calculate APE scores to
evaluate the trajectory similarity between the thermal image
sequences and translated color image sequences from differ-
ent approaches. We summarized the results in qualitative and
quantitative aspects respectively.

1https://segments.ai/panoptic/visible/
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Fig. 5. Comparison of image quality for translated images from different approaches including corresponding original thermal and ground truth images.
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Fig. 6. The extracted key points with depth maps from translated images in VO for different approaches (This figure is best visualized in color format).

Seq. 01 Seq. 02 Seq. 03 Seq. 04

Fig. 7. The VO performance of translated sub-sequences for different approaches, estimated trajectories of different approaches are compared.

C. Qualitative results

For image quality, Fig. 5 presents the image translation
results from different approaches. Referring to the ground
truth, our model can translate more realistic, fine-grained and
colorful images; the results of other methods are more blurry,

distorted, and the colors are not bright. Also, our translated
objects have better sharpness, a more natural color style,
and display diversity (e.g., the appearance of cars); translated
objects of other methods have not satisfactory sharpness, the
style is far from the ground truth, and insufficient diversity.
For comprehensive scene similarity with ground truth, our



results are also relatively more robust compared to other
methods. For VO performance, we use two methods (i.e.,
TICCGAN+Seg [9] and INIT [26]) with the highest perfor-
mance to compare with our results. We run the DSO method
on both original thermal image sequences and translated
color image sequences through different approaches. As
shown in Fig. 6, the extracted key point comparison for
translated color images from different methods including
original thermal and ground truth shows that our results are
more than baselines, they can be robustly obtained and more
consistent with ground truth. Fig. 7 shows that our method
can estimate more accurate trajectories compared to the
results of other methods. Note that we measure the absolute
trajectory error because the raw KAIST-MS dataset [33]
was published by some discontinuous video clips and test
sequences are relatively short, i.e., less than 50m. As shown
in different sub-graphs, our results consistently show the
estimated trajectories that match the expected orientation and
pose on each sub-sequence compared with other methods.

TABLE I
DIFFERENT BASELINES AND OUR APPROACH ARE COMPARED ON IMAGE

QUALITY (EVALUATED BY IS, FID AND DS METRICS). HIGHER IS,
HIGHER DS, AND LOWER FID IS BETTER.

method IS ↑ FID ↓ DS ↑
MUNIT+Seg [7] 2.29±0.18 98.56±0.41 0.46

BicycleGAN+Seg [8] 2.61±0.30 98.83±0.58 0.47
SCGAN [24] 2.59±0.14 96.41±0.14 0.39

TICCGAN [9] 2.67±0.50 90.15±0.67 0.48
INIT [26] 2.70±0.62 83.27±0.34 0.37

Ours 2.85±0.38 72.74±0.21 0.54

TABLE II
ABSOLUTE TRANSLATIONAL ERROR (TREL ) AND ROTATIONAL ERROR

(RREL ) METRICS (LOWER IS BETTER) ARE TO EVALUATE THE VO
PERFORMANCE OF TRANSLATED SEQUENCES FOR DIFFERENT METHODS.

Thermal TICCGAN INIT Ours
seq. trel rrel trel rrel trel rrel trel rrel
01 2.30 2.00 1.24 1.57 1.05 1.56 0.89 1.16
02 2.45 1.81 1.75 2.79 1.59 2.86 1.28 1.49
03 2.37 3.14 1.31 1.29 1.20 1.38 1.03 1.10
04 3.30 2.56 2.44 2.23 2.18 2.46 2.05 1.71

D. Quantitative results

For image quality, the IS, FID and DS in Table I show
that our approach achieved superiority in image quality of
translated images compared to other approaches. Our method
overall outperforms baselines since we avoid losing too much
information in the translation. The higher IS and lower
FID of our method verified that our translated color images
have higher fidelity and sharpened object information. The
higher DS demonstrated that our method can show more
flexibility and high robustness when the scene is invariant,
e.g., generated objects. For VO performance, Table II (TIC-
CGAN [9] with +Seg, just not shown) validated that our
method can estimate more accurate trajectories compared

to other methods. We measure APE (absolute translational
error trel + rotational error rrel) between translated color
(including original thermal) image sequences and ground
truth image sequences, and our results are significantly lower
than others, this is consistent with the estimated trajectory
comparison results in Fig. 7. Especially for image sequences
in discontinuous environments, our sub-set error remains
consistently lowest, which demonstrates the robustness of
our method to environmental scene adaptation. In contrast,
the results of other methods are not very stable.

TABLE III
THE PERFORMANCE OF MODELS REMOVING DIFFERENT LOSSES AND

MODULES ARE COMPARED IN IMAGE QUALITY (EVALUATED BY IS, FID
AND DS) AND VO (EVALUATED BY TREL AND RREL ).

method IS ↑ FID ↓ DS ↑ trel ↓ rrel ↓
w/o Lobj 2.24±0.17 110.4±0.46 0.47 2.03 2.10
w/o Limg

1 2.64±0.42 104.3±0.13 0.45 1.43 1.63
w/o Lp 2.66±0.16 97.1±0.27 0.42 1.50 1.60
w/o Mmsk 2.53±0.73 101.6±0.65 0.47 1.41 1.67
w/o Mclstm 2.63±0.59 103.2±0.70 0.42 1.81 1.78
full model 2.85±0.38 72.74±0.21 0.54 1.31 1.37

E. Ablation Study
We demonstrate the necessity of losses and modules (Lobj:

object-level hinge loss; Limg
1 : image reconstruction loss; Lp:

perceptual loss; Mmsk: feature masking; Mclstm: cLSTM)
by comparing IS [45], FID [46] and DS [50] for image
quality and APE for VO performance. As shown in Table III,
Removing Lobj and Limg

1 have lower IS, DS, and higher FID
due to generating low fidelity image and objects with fewer
variations and Lobj compute the category projection scores for
objects. The trel and rrel values rose because the DSO method
is affected by gradient points through the boundaries of
objects. Removing Lp, the model produces distorted textures
to inevitably decrease image quality and VO performance.
Removing any Mmsk or Mclstm module decreased the overall
performance, which demonstrates their necessities. Because
Mmsk sharpens object boundaries and Mclstm sequentially
integrates different objects back into image.

V. CONCLUSION

In this paper, we presented a novel thermal-to-color image
translation method that outperforms baselines, verified that
the image quality of its translated color image is significantly
better than baselines and the translated image sequences can
intuitively enhance VO performance compared to baselines
or thermal image sequences. Furthermore, It can also en-
hance object recognition performance and is expected to
be used in night vision for autonomous driving and robotic
systems.
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