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Abstract—Image-to-image translation methods have pro-
gressed from only considering the image-level information to
integrating the global- and instance-level information. However,
only the foreground instances are refined, and the background
semantics are taken as an entire feature, which causes a sub-
stantial loss of the semantic information in the translation.
Additionally, the insufficient quality of the translated semantic
regions also leads to an unsatisfactory performance of the object
recognition or visual odometry tasks in which the translated
images/videos are further used. In this paper, we propose a
novel generative adversarial network for panoptic-level image-
to-image translation (PanopticGAN). The proposed method has
three advantages: (1) the extracted panoptic perception (i.e.,
the foreground instances and background semantic regions) as
content codes are aligned with the sampled panoptic style codes,
which considers the panoptic-level information to avoid the
semantic information loss, and the latent space of each object has
a rich fusion of content and style codes to generate the higher-
fidelity results; (2) a feature masking module is proposed to
extract the representations within each object contour by masks
for sharpening the object boundaries; (3) the improved fidelity of
the translated semantic regions further contributes to enhancing
the performance of the object recognition or visual odometry
tasks that the translated images/videos are used in. In this paper,
we also annotate a compact panoptic segmentation dataset for
the thermal-to-color translation task. Extensive experiments are
conducted to demonstrate the effectiveness of our PanopticGAN
over the latest methods.

Index Terms—Image-to-image translation, panoptic-level, fea-
ture masking, generative adversarial networks, image/video
enhancement.
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(a) Image-level: BicycleGAN (Baseline)
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(b) Instance-level: INIT (Baseline)
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(c) Panoptic-level: PanopticGAN (Proposed)
Fig. 1. Pipeline comparisons of image-level baselines [1], instance-level
baselines [2], and our proposed panoptic-level approach. (a) only uses image-
level style codes randomly sampled from the style space of the target domain
for image translation; (b) combines instance-level style codes (target objects
are the only countable foreground instances ‘thing’, e.g., car or traffic light)
and image-level style codes; Our proposed approach (c) combines panoptic-
level style codes (target objects are both ‘thing’ and uncountable background
segments ‘stuff’, e.g., tree or road) and image-level style codes to avoid losing
too much information in the translation.

IMAGE -to-image (I2I) translation is a challenging problem
in the computer vision field. Translated images need to

retain the content information of the input domain image and
obtain the style of the target domain [3], [4]. Several tasks can
be considered I2I translation problems, e.g., superresolution
[5], [6], neural style transfer [7], and colorization [8], [9].
Utilizing the enhanced images/videos through I2I transla-
tion to further improve the task performance has become a
prominent area of research in recent years, e.g., Fu et al.
[10] utilized a night-to-day image translation to enhance the
object detection performance at nighttime; Zhu et al. [11]
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(a) Panoptic-level image-to-image translation
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(b) Enhancement for object recognition and visual odometry
Fig. 2. Our motivation consists of two parts: (a) is our proposed method, which is used for general I2I translation tasks, e.g., summer-to-winter, day-to-night
and thermal-to-color, etc.; (b) indicates the mission of our paper. We expect that using our translated image sequences can enhance the performance of the
object recognition tasks and improve the extracted key points for better a performance (more accurate estimated trajectory) in the visual odometry tasks. The
white and semidense dots represent the 3D reconstructed point clouds, and the red curve represents the estimated trajectory.

proposed a night-to-day image translation for the performance
enhancement of background modeling; ForkGAN [12] pre-
sented a task-agnostic image translation to boost multiple
vision tasks; MFGAN [13] transferred night videos to day
videos to improve the resolution for impressive gains in the
visual odometry and simultaneous localization and mapping
(SLAM) [14] tasks. However, these methods only consider
the image-level information in the I2I translation without
refining the object semantics, or the advanced instance-level
methods proposed later also only refined the foreground in-
stance objects without considering the background semantic
regions. Due to a substantial loss of the semantic information
in the translation, it causes the insufficient quality of the
translated objects and further leads to a limited enhancement
of the task performance. Therefore, how to avoid the semantic
information loss to translate the higher-fidelity images for
improving the task performance is a fundamental problem and
an important challenge.

I2I translation has evolved from image-level methods [15],
[16] to instance-level methods [2], resulting in significant im-
provements in the fidelity of translated images. As illustrated
in Fig. 1 (a), the image-level baseline extracts the image rep-
resentations as content codes to combine with the image-level
style codes, which are randomly sampled from the style space
of the target domain for I2I translation. The instance-level
baseline in Fig. 1 (b) uses a pretrained instance segmentation
network [17] to extract the instance perception from the input
image, which contains object bounding boxes, categories,
and masks. It uses Region of Interest Align (RoIAlign) [17]
to extract the instance representations, which combines the
image representations as content codes. The sampled instance-
level style codes and image-level style codes are aligned
with the corresponding content codes for an instance-level
I2I translation. Compared with image-level I2I translations,
instance-level I2I translations can refine the foreground object

instance representation precisely, however, the background
semantic regions are not fully refined. In contrast, panoptic-
level I2I translations can thoroughly refine the foreground ob-
ject instances ‘thing’ and background semantic regions ‘stuff’
[18] in the translation for preventing the loss of too much
information. From a theoretical perspective, the panoptic-level
method captures an adequate amount of information to achieve
higher fidelity in both the foreground and background.

In this paper, our proposed PanopticGAN uses a pretrained
panoptic segmentation [19] network to extract the panoptic
perceptions. In Fig. 1 (c), ‘thing’ (foreground object instances)
and ‘stuff’ (background semantic regions) representations are
extracted as object content codes to avoid the semantic in-
formation loss, which are combined with the image-level
representations as content codes. The sampled panoptic-level
style codes and image-level style codes are aligned with the
corresponding content codes to generate the higher-fidelity
images during the translation process. We also propose a
novel feature masking module that leverages object contour
masks to extract object-specific representations and sharpen
object boundaries. Therefore, our proposed method improves
the fidelity of the translated semantic regions and enhances the
entire image quality, which contributes to further enhancing
the performances of the object recognition and visual odome-
try by using the translated images/videos.

Fig. 2 illustrates the mission of this paper. In Fig. 2 (a),
our proposed method can be used for general I2I translation
tasks, e.g., summer-to-winter, day-to-night and thermal-to-
color, etc., which can obtain higher image quality (realism,
sharpness and diversity) than the baseline approaches. In Fig. 2
(b), the original (thermal) subsequences are translated to a
target (color) subsequences for a performance enhancement in
object recognition and visual odometry tasks. The top right
shows the enhanced object recognition results on the panop-
tic segmentation [19], which recognized the objects more
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exhaustively and accurately. In the bottom right, the Direct
Sparse Odometry (DSO) [20] method is run on the translated
subsequences (video) to extract the enhanced key points with
depth maps, which denote more robust gradient points for
better 3D reconstructions (point clouds) and estimated scene
movement (trajectories). Our main research contributions are
fourfold:

• A pioneering panoptic-aware I2I translation network is
proposed to refine both the foreground instances and
background semantic regions, which avoids a substantial
loss of the semantic information, and the latent space of
each object has a rich fusion of content and style codes
to generate higher-fidelity images.

• A feature masking module is proposed to extract the
representations within each object contour by masks;
it removes the redundant background information that
exists in the object features cropped by the bounding box
for sharpening object boundaries and translating higher
fidelity objects.

• The proposed panoptic-level model improves the fidelity
of the translated semantic regions and enhances the entire
image quality, by using the translated images/videos
for the object recognition and visual odometry tasks
can enhance the performances compared to the original
images/videos.

• We also annotated a compact panoptic segmentation
dataset on a partial KAIST-MS dataset [21] for the
thermal-to-color translation task. Extensive experiments
are conducted on the image quality comparisons, the
performance enhancement of the object recognition and
visual odometry tasks, including ablation studies, to
demonstrate the superiority of our proposed approach.

Our preliminary work (Zhang et al. [22]) has been published
in a previous conference WACV 2023. Compared to the
previous conference paper, our major new contributions are
that we extend the image synthesis via the proposed image
translation algorithm to continuous sequence frames (video)
and use the results to enhance the monocular visual odometry
performance, which makes this work a complete benchmark.
We propose a novel panoptic-level image-to-image translation
approach to boost the previous state-of-the-art methods, and
the synthesized higher fidelity images/videos can be used in
object recognition and visual odometry to achieve an enhanced
and fairly competitive performance, respectively. We added
comparisons of the extracted key points and estimated trajec-
tories from the translated visual odometry image sequences
(video). Moreover, we also conduct additional experiments by
adding new baselines and competing models improved by the
panoptic information for evaluation comparisons.

The remainder of this paper is organized as follows. The
related works are reviewed in Section II. The proposed module
and the presented translation framework are described in
Section III. Section IV presents and discusses experiments,
results and corresponding analyses including ablation studies
and model efficiencies. Finally, conclusions and future works
are provided in Section V.

II. RELATED WORKS

A. Image-to-Image Translation

Image-to-image (I2I) translation models transform the input
domain image to the target domain [3], changing the style
but keeping the scene content unchanged. Pix2Pix [15] can
achieve paired mapping learning, however, it needs the paired
datasets and generates a single-modal output. BicycleGAN [1]
can generate multimode and more diverse results by encourag-
ing a bijective mapping between the latent and output spaces.
CycleGAN [23] can achieve unpaired dataset training by
using cycle consistency loss. The disentangled representation
models [3], [24] utilize a combination of the content from
the input domain and the style from the target domain for
unsupervised learning. TICCGAN [25] adds perceptual loss
[7] and total variation (TV) loss [26] to optimize networks.
Pix2PixHD [16] can translate high-resolution images via a
multiscale discriminator and coarse-to-fine generator. PGGAN
[27] utilizes a progressive growth strategy to synthesize images
from low to high resolution. AGGAN [28] and U-GAT-IT [29]
can extract attention regions as structure guidance to localize
important content for high-quality results. TSIT [30] uses a
two-stream generative model with a feature transformation in
a coarse-to-fine fashion for capturing and fusing the multiscale
semantic structure information and style representation. FDIT
[31] proposes a novel frequency domain image translation
framework, exploiting the frequency information to enhance
the image generation process. Pang et al. [32] proposed a
unified GAN network that jointly estimates transmission maps,
atmospheric light, and haze-free images for image dehazing,
which can be regarded as a type of image-level translation
from hazy to haze-free. The pSp [33] uses a novel encoder to
directly map a real image into the W+ latent space with no
optimization needed, and styles are extracted in a hierarchical
fashion and fed into the corresponding inputs of a fixed
StyleGAN [34] generator. However, the above image-level I2I
translation methods only consider the image-level information
not refine the object-level features in the translation.

B. Instance-Level Image-to-Image Translation

The instance-level I2I translation was derived from the
development of object-driven image generation research, e.g.,
Scene-Generation [35] and sg2im [36] can synthesize images
from object scenes, and Layout2Im [37], OC-GAN [38], and
LostGAN [39] can utilize scene layouts to achieve object-
level image synthesis. These object-driven methods transform
nonimage containers (e.g., scene layouts with bounding boxes)
with object style codes to the target image, however, adopting
bounding boxes to define objects makes it difficult to generate
objects with sharp boundaries. The instance-level I2I transla-
tion methods use object perception (bounding boxes or masks),
which is effective for generating sharp object boundaries.
Instagan [40] incorporates a set of instance attributes for
instance-aware I2I translation. DA-GAN [41] uses a deep
attention encoder to enable the instance-level correspondences
to be discovered. SCGAN [8] and SalG-GAN [42] utilize
saliency-based guidance for image translation, which priori-
tizes salient regions and is considered an instance-level method
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(b) Pipeline
Fig. 3. Overview. In (a), the summer s and winter w images are self-encoded (s2s and w2w) and cross-encoded (s2w and w2s) simultaneously for image
translation, where the style codes Zw and Zs are randomly sampled from the normal distribution. The red arrows in (a) correspond to the process of (b). In
(a), a panoptic perception is extracted from the pretrained panoptic segmentation model to support the basic RoIAlign module and proposed modules (panoptic
object style-align and feature masking). The sampled image-level Zimg and panoptic-level Zobj style codes are combined for target image generation.

due to the higher saliency values of foreground objects. Shen
et al. [2], Su et al. [43] and Chen et al. [44] combined an
instance-level feature with an image-level feature for higher
quality instance-level I2I translation. InstaFormer [45] presents
a novel Transformer-based network instance-aware image-to-
image translation network to effectively integrate the global-
level and instance-level information. However, these instance-
level I2I translation methods only refine the foreground in-
stance objects without considering the background semantic
regions, resulting in a significant loss of the background
semantic information.

C. Panoptic-Level Image-to-Image Translation

To the best of our knowledge, the panoptic-level I2I trans-
lation problem has not yet been investigated. From a theoret-
ical perspective, instance-level I2I translations only consider
foreground instances as objects for learning, and have certain
disadvantages compared with panoptic-level I2I translations,
which regards both the foreground ‘thing’ and background
‘stuff’ as objects to avoid losing too much information in
the translation. Lin et al. [46] extracted image regions for the
discriminator to improve the performance of the GANs. Huang
et al. [47] provided a solution to semantically control output
based on references. Dundar et al. [48] proved that panoptic-
level perception makes the generated images have a higher
fidelity and shows the tiny objects in more detail. Semantic
segmentation [49]–[52] can obtain a semantic perception of
an image, but it cannot identify instances. Instance segmen-
tation [53]–[56] can obtain the object instance perception
of an image, but it cannot segment the uncountable back-
ground regions. Panoptic segmentation [18], [57] combines
semantic segmentation and instance segmentation to define
the uncountable background regions (e.g., sky and road) as
‘stuff’ and the countable foreground instances (e.g., person
and car) as ‘thing’ for a thorough image perception. Therefore,
we use a pretrained panoptic segmentation [19] network to
extract panoptic perception (covering ‘thing’ and ‘stuff’) to

combine the sampled panoptic-level style codes and image-
level style codes with the corresponding content codes for
higher-fidelity panoptic-aware I2I translations. Compared to
the image-level and instance-level methods, our proposed
panoptic-level method refines the object semantics on both the
foreground and background to avoid the semantic information
loss, and improves the fidelity of the translated objects to
futher enhance the task performance.

III. THE PROPOSED METHOD

A. Overview

We provide an overview of our proposed method via the
training manner and pipeline, using a summer-to-winter (trans-
forming summer domain to winter domain) image translation
task as an example to describe our framework’s details.

1) Training manner: In Fig. 3 (a), we use a summer image
s and a winter image w from the Transient Attributes dataset
[58] to extract the content codes (summer: Cs, winter: Cw)
and style codes (summer: Ss, winter: Sw). Es and Ew are
the encoders of s and w, respectively. Ds and Dw are the
decoders. By combining Cs with Ss to feed into Ds, we
can reconstruct a summer image s2s. Similarly, by combining
Cw with Sw to feed into Dw, a winter image w2w can
be reconstructed. The style codes Zw and Zs are randomly
sampled from the normal distribution. By hypothesizing that
Zw is from the winter-style space and combining Cs with Zw

to feed into Dw, a winter image s2w can be synthesized, as
indicated by the red arrows. Similarly, we hypothesize that
Zs is from the summer-style space to combine with Cw to
synthesize a summer image w2s by Ds. For training, the above
four processes are divided into cross-domain training (s2w and
w2s) and within-domain training (s2s and w2w), which are
deployed together [3].

2) Pipeline: In Fig. 3 (b), we utilize a pretrained panoptic
segmentation network to obtain the panoptic perception of the
input image scene. It provides the panoptic-level bounding
boxes, categories, and masks to the corresponding modules
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Fig. 4. Architecture. In the generator, the summer image is extracted by the backbone consisting of down-sampling residual blocks to image-level
representations, which are cropped by RoIAlign by bounding boxes from the panoptic perception of the pretrained model to the panoptic-level representations.
Both representations are aligned with sampled winter style codes from the normal distribution. The redundant background information of (panoptic-level) the
style-aligned codes is removed by feature masking, and the results are reintegrated by cLSTM to combine with image-level representations for color image
generation. In the discriminator, the translated image is extracted to the image-level and panoptic-level representations, which are processed to a fusion hinge
loss consisting of an image-level realness score and object-level realness scores with category projection scores.

of the generator. They are provided to the basic RoIAlign
[17] module and our proposed novel modules (panoptic object
style-align and feature masking), respectively. The details are
illustrated in the Architecture section. First, the image-level
representation is extracted, the panoptic-level style codes Zobj

and image-level style codes Zimg are sampled from the normal
distribution, and m is the number of objects perceived in
the panoptic perception. Note that we treat both and ‘thing’
and ‘stuff’ as objects in the panoptic perception. Zobj and
Zimg are aligned with the corresponding object-level and
image-level representations in the generator for a panoptic-
level image translation. The translated images are fed into
the discriminator, which calculates the object-level loss and
image-level loss separately. Here, we utilize fusion hinge loss,
which consists of the image and object adversarial hinge loss
terms [59].

B. Architecture
Our architecture, as illustrated in Fig. 4, is built on a

generator, a discriminator and the proposed novel modules
(panoptic object style-align and feature masking). We deploy
a generative adversarial learning setting via the summer and
winter domain images from the Transient Attributes dataset
[58] to illustrate our architecture.

1) Generator: In the generator, the input summer image
s (e.g., 256 × 256) is extracted by a backbone module
consisting of down-sampling residual blocks to obtain the
image content codes Cimg (size 32 × 32, dimension 256).
Let P = {(categoryi, bboxi,maski)

m
i=1} be the panoptic per-

ception consisting of categories, bounding boxes, and masks,

where m is the number of objects perceived from a pretrained
panoptic segmentation network, and categoryi ∈ CAT (CAT
defines 134 categories in the COCO-Panoptic dataset [18],
here the ‘thing’ has 80 categories and the ‘stuff’ has 54
categories). Cimg is cropped by RoIAlign [17] through the
object bounding boxes of P (bboxi)

m
i=1 into the object content

codes Cobj =
{
Cobji

}m

i=1
(size 8 × 8, dimension 128).

Define Zimg as the image-level style codes (dimension 256)
and Zobj =

{
Zobji

}m

i=1
as the panoptic-level style codes

(dimension 64), which are randomly sampled from the normal
distribution; m is equal to the number of objects perceived
in the panoptic perception. The goal of the generator in the
summer-to-winter translation is to learn a generation function
G(·), which is capable of translating summer image, s, to a
generated winter image, w

′
, via a given (Zimg, Zobj):

w
′
= G(s|Zimg, Zobj ; ΘG) (1)

where ΘG are the parameters of the generation function.
For the panoptic object style-align module, we use an MLP

network to process the panoptic-level style codes Zobj ={
Zobji

}m

i=1
to dynamically generate the parameters y =

(yγ , yβ) of the adaptive instance normalization (AdaIN) [34]
layers. Then, the object content codes Cobj are processed by
the residual blocks with the AdaIN layers. The parameters of
the AdaIN layers fuse the panoptic-level style with the content
to translate the different objects in the target image.

AdaIN(xi, y) = yγ,i

(
xi − µ(xi)

σ(xi)

)
+ yβ,i (2)
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where xi is each feature map of Cobj , which is normalized
separately, and then scaled and biased using the corresponding
scalar components from style y. µ and σ are the channelwise
means and standard deviation, respectively, and γ and β are the
AdaIN parameters generated from Zobj . This process achieves
a panoptic object style-align, and we obtain the style-aligned
object representations Oobj =

{
Oobji

}m

i=1
.

Oobj = AdaIN(Cobj , Zobj) (3)

Similarly, the image-level style codes Zimg are also pro-
cessed by the MLP network to generate the AdaIN parameters,
which fuse the image-level style with the image content codes
Cimg by the residual blocks with the AdaIN layers to obtain
a hidden representation Himg .

For the feature masking module, as illustrated in Fig. 4, Oobj

contains m object feature maps
{
Oobji

}m

i=1
. Since the object

bounding boxes P (bboxi)
m
i=1 define the size and location of

each object in the original image, we first affine transform
each object feature map Oobji into its corresponding original
bounding box. Second, we perform zero-padding outside each
bounding box in the image to obtain new object feature maps
Bobj =

{
Bobji

}m

i=1
. To remove the redundant background in-

formation outside the object contour, we further refine Bobj via
the object masks M = P (maski)

m
i=1 for more precise object

boundaries. Compared with the convolutional feature masking
(CFM) layer [60] using the pixel projection method, after the
affine transformation the size of each feature map in Bobj is
the same as mask M. Therefore, we only need to align Bobj

and M along the category sequence of 1 ∼ m and multiply to
mask the values outside of the object contour. Finally, we can
obtain finer object feature maps Fobj =

{
Fobji

}m

i=1
.

Fobj = Bobj ·M (4)

����  

...

(tree)

(car)

(mountain)

�����  

�����  

�����  

512  256  128  128  

Fig. 5. Illustration of the convolutional long short-term memory (cLSTM)
component. We use three layers of cLSTM to fuse all the object feature maps
into hidden feature maps Hobj . The numbers of channels in each layer of
cLSTM are 256, 128 and 128. The residual blocks are omitted for clarity.
The first of each row is the object feature maps of Fobj =

{
Fobji

}m

i=1
.

After feature masking, the masked object feature maps need
to be fused into a well-hidden representation to generate a
realistic target image. Therefore, we need to integrate all the
objects into the desired locations and coordinate the object
feature maps based on the other objects in the image. As
shown in Fig. 5, the convolutional long short-term memory
(cLSTM) [61] is a multilayer convolutional LSTM network,
wherein the hidden states and cell states are both feature maps
rather than vectors, which differs from the traditional LSTM
[62]. The computation of the different gates is also performed
by the convolutional layers. Therefore, cLSTM can better
preserve the spatial information compared with the traditional
vector-based LSTM. It can integrate each object feature map,{
Fobji

}m

i=1
, one-by-one, along the object sequence of 1 ∼ m

obtained by panoptic perception. The last output of cLSTM is
used as the fused hidden representation Hobj . Different objects
are sequentially fused while keeping their spatial locations
in the image. We concatenate Hobj with Himg as H , which
is upsampled by a decoder consisting of upsampled residual
blocks to generate a translated winter image w

′
.

2) Discriminator: As illustrated in Fig. 4, our discriminator
consists of image-level and object-level classifiers. Similar
to the generator, the translated image is encoded by the
backbone as image content codes Cimg , which are refined by
RoIAlign [17] as object content codes Cobj =

{
Cobji

}m

i=1
by bounding boxes P (bboxi)

m
i=1. The image-level classifier

consists of global average pooling and a one-output fully
connected (FC) layer to process Cimg to obtain a scalar
realness score simg . The object-level classifier consists of a
flattened layer and two FC layers. One FC layer processes
Cobj to compute a realness score for each object, and is
denoted by sreal = {sreali}

m
i=1. Another FC layer computes a

category projection score [39], [63], [64] for each object, and
is denoted by scls = {sclsi}

m
i=1, which is the inner product

between a category embedding (transforming each category
of P (categoryi)

m
i=1 to a corresponding latent vector sampled

from the normal distribution) and a linear projection (using
an FC layer) of the downsampled Cobj . Therefore, the overall
object-level loss of an object is sobji = sreali + sclsi . The
discriminator is denoted by D(·,ΘD) with the parameters ΘD.

(simg, sobji , · · · , sobjm) = D(I; ΘD) (5)

Given an image I (ground truth w or generated w
′
), the

discriminator computes the prediction score for the image and
the average scores for the objects.

C. Loss Function

The full objective of our model comprises three loss func-
tions. We train the generator and discriminator networks end-
to-end in an adversarial manner. The generator is trained to
minimize the weighted sum of losses.

1) Adversarial Loss: We utilize the image-level and object-
level fusion hinge version [59] of the standard adversarial loss
[65] to train (ΘG,ΘD) in our PanopticGAN, which is utilized
to ensure that each object’s information can be optimized and
to avoid losing too much information in the translation.
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lk(I) =

{
min(0,−1 + sk); if I is ground truth w

min(0,−1− sk); if I is generated w
′ (6)

where k ∈ {img, obji, · · · , objm}. The overall loss is

l(I) = λ · limg(I) +
1

m

∑m
i=1 lobji(I) with the trade-off

parameter λ (1.0 used in the experiment) in the fusion hinge
losses between the image-level and the object-level. We define
the losses for the discriminator and the generator [39],

Ladv(ΘD,ΘG) = − E
(I) pall(I)

[l(I)]

Ladv(ΘG,ΘD) = − E
(I) pfake(I)

[D(I; ΘD)]
(7)

where minimizing L(ΘD,ΘG) tries to tell the discriminator
to distinguish the ground truth and the translated images,
but minimizing L(ΘG,ΘD) tries to fool the discriminator by
translating the fine-grained images. pall(I) represents all of the
ground truth and translated images, and pfake(I) represents
the translated images.

2) Image Reconstruction Loss: We need Limg
1 =∥∥∥w′ − w

∥∥∥
1

to penalize the L1 difference between the trans-

lated image w
′

and the ground truth w, and ∥1 calculates the
L1 norm. Here, we mainly calculate the within-domain (s2s
and w2w) ways described in the training manner. Image re-
construction loss is essential for within-domain training and is
also a very efficient pixelwise image generation optimization.

3) Perceptual Loss: We use Lp to alleviate the problem that
the translated images are prone to producing distorted textures
[16]. It is beneficial to keep the textures in a high-level space
through the ReLU activation of the VGG-19 network [7],

Lp =
∑

k

1

CkHkWk

Hk∑
i=1

Wk∑
j=1

∥∥∥ϕk(w
′
)i,j − ϕk(w)i,j

∥∥∥
1

(8)

where ϕk(·) represents the feature representations of the
kth max-pooling layer in the VGG-19 network, and CkHkWk

represents the size of the feature representations.
4) Full Objective: The final loss function is defined as:

Ltotal = λ1Ladv + λ2L
img
1 + λ3Lp (9)

where λi are the parameters balancing different losses. λi

are usually the hyperparameters in the deep learning network
trained through extensive experiments. We empirically deter-
mine the optimal tradeoff parameters after a large number of
countless experiments.

D. Implementation Details

We provide the necessary explanation for some parameters
set in the experiment, including the network architecture
parameters and training parameters.

1) Network Architecture: The descriptions of the network
architectures of PanopticGAN are shown in the Architecture
section and we provide some detailed parameter explanations
unmentioned in the main text. The backbone is composed
of four residual blocks for downsampling. The RoIAlign
operation crops from different sizes (32 and 16 in the ex-
periment) image representations and combines them. We use
a three-layer MLP network with spectral normalization and
the leaky-ReLU activation function to process the sampled
style codes. After a fusion of panoptic content and style,
we obtain Oobj (category m, dimension 128, size 32 × 32).
After resizing and zero padding, Bobj (category m, dimension
128, size 256× 256) is multiplied by masks M (category m,
size 256 × 256) to obtain Fobj (category m, dimension 128,
size 256 × 256), which is processed by four downsampled
convolution layers with a batch normalization. The result
(category m, dimension 512, size 32 × 32) is fed into the
cLSTM and then processed by six residual blocks to obtain
Hobj (dimension 128, size 32 × 32), which is concatenated
with Himg (dimension 128, size 32× 32). H (dimension 256,
size 32 × 32) is fed into the decoder, which consists of six
residual blocks for upsampling and a final convolution layer
with batch normalization and tanh activation.

2) Training: To stabilize the training of GANs, spectral
normalization [66] is used for the layers in both the generator
and the discriminator. For the activation function, we use
leaky-ReLU with a slope of 0.2 in the modules. In Ltotal,
the trade-off parameters, λ1 ∼ λ3, are empirically set to 0.1,
1 and 10, respectively. Our model is trained using the Adam
optimizer [67] with β1 = 0 and β2 = 0.9. The batch size is set
to one for all the experiments. We set 400,000 iterations for
training on four NVIDIA V100 GPUs. We train all models of
the generator with a fixed learning rate of 10−4, and train all
models of the discriminator with a fixed learning rate of 0.005
until 200,000 iterations, and linearly decay up to 400,000
iterations. We also use a weight decay at a rate of 0.0001.
The weights are initialized using the orthogonal initialization
method [68].

IV. EXPERIMENTS

We conduct extensive experiments to evaluate our method
with competing I2I translation baseline tasks to show our
superiority. We mainly evaluate three aspects, i.e., the image
quality of the translated images, the object recognition per-
formance of the translated images, and the visual odometry
performance of the translated videos. The evaluation of the
image quality mainly conducts a comprehensive comparison
based on three aspects, realism, sharpness and diversity. For
the object recognition performance, we mainly perform panop-
tic segmentations on the translated images and compared the
panoptic quality (PQ) [18] series’ metric values. Because
panoptic segmentation includes semantic segmentation for the
background, and instance segmentation for the foreground, it
can be evaluated more comprehensively than instance seg-
mentations and object detections. For the visual odometry
(VO) performance, we validate the performance of the direct
VO method, namely, the direct sparse odometry (DSO) [20].
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Specifically, we choose six subsequences from the entire
route. Each subsequence includes several characteristics, such
as multiple corners and a straight-shaped route. Note that
there were no overlapping segments between the training
sequences and the testing sequences. Based on the specific
metrics, we compare our method against several baselines,
both qualitatively and quantitatively. The comparisons include
the image quality of the translated images, the object recogni-
tion performance on translated images and the visual odometry
performance on translated videos.

A. Baselines

For the baselines, we mainly select the competing methods,
which achieved good results, as the state-of-the-art baselines
to compare with our method. In addition, we aimed to show
our proposed panoptic-level method as an upgraded image-
to-image translation method that is better than the instance-
level and image-level methods. Therefore, we summarize
the baselines into image-level and instance-level baselines
to facilitate the evaluation comparisons. For the competing
methods, MUNIT [3], BicycleGAN [1], TSIT [30], FDIT
[31] and pSp [33] were categorized under image-level I2I
translations. As SCGAN [8] uses saliency maps for salient
regions perception, we regarded SCGAN as an instance-level
translation. INIT [2] and InstaFormer [45] are instance-level
methods, so we also implemented them as instance-level
evaluations for fairer comparisons. Since the experimental
results of TICCGAN [25] showed high competitiveness in the
visual odometry performance evaluation, we added it as one of
the baselines for evaluating comparisons of the visual odom-
etry performances. To achieve an adequately fair comparison,
we added the panoptic perception to image-level competing
methods, i.e., MUNIT, BicycleGAN, TSIT, FDIT and pSp,
as well as TICCGAN. It was extracted from a pretrained
panoptic segmentation network [19]. The panoptic perception
(as an additional feature channel) was concatenated with the
image feature maps for training. Additionally, to neutralize
the advantage brought by the additional pretrained panoptic
network, to provide a adequately fair comparison, we also
added panoptic-replaced instance-level competing methods
(SCGAN+Panoptic, INIT+Panoptic, InstaFormer+Panoptic),
that is, instances were replaced with panoptic information (in-
stance + semantics) based on the pretrained panoptic network
for the training and result evaluation comparisons.

B. Datasets

We trained and evaluated our model on the Transient
Attributes [58] and KAIST-MS [21] datasets for day-to-night,
summer-to-winter and thermal-to-color I2I translation tasks
using 256 × 256 resolution images. In the day-to-night I2I
translation task, we used 17,823 images for training and 2,287
images for evaluation; in the summer-to-winter I2I translation
task, the training set had 17,674 images and the evaluation set
had 2558 images; in the thermal-to-color I2I translation, the
training set consisted of 11,610 images, and the evaluation set
had 2,541 images. Our method used panoptic-level perception
to avoid losing too much information in the translation. For

panoptic perception in the training and inference processes of
the day-to-night and summer-to-winter I2I translation tasks,
we utilized a Panoptic FPN model [19] pretrained on the
COCO-Panoptic dataset [18] to perceive from the input day
images and summer images. For panoptic perception in the
training process of the thermal-to-color I2I translation task, we
perceived it from the paired color images via the pretrained
Panoptic FPN model on the COCO-Panoptic dataset; in the in-
ference, it is perceived from the input images via the pretrained
Panoptic FPN model on a compact dataset of thermal panoptic
segmentation, and the source data were the pairs of thermal
and color images from the partial KAIST-MS [21] dataset.
The unaugmented source data from our contributed dataset
contained 2,026 pairs of thermal and color images based on the
partial KAIST-MS [21] dataset, which was annotated via the
Segments.ai platform for panoptic segmentation annotation by
three professionally trained annotators. The annotated datasets
could be augmented by various image manipulations for a
variety of tasks. We show an overview of the annotated dataset
via this link1. Please refer to the insights section on the
overview tab for the distribution of the categories and the
number of annotated objects (‘thing’ and ‘stuff’). For the
annotation quality and the details of images, we show the
samples of the dataset on paired color images via this link2.

C. Evaluation Metrics

We evaluated the image quality and object recognition
performance of the translated images, and evaluated the visual
odometry performance of the translated videos. We chose the
Human Preference (HP), Inception Score (IS) [69], Fréchet
Inception Distance (FID) [70] and Diversity Score (DS) met-
rics instead of the Peak signal-to-noise ratio (PSNR) and
structure similarity index (SSIM) [71] metrics to evaluate
image quality. For images generated by the GAN learning
models, the traditional PSNR and SSIM metrics deviate from
human visual perception [72]. Panoptic Quality (PQ) [18]
series metrics were used to evaluate the object recognition
performance. The absolute pose error [73] metric was used
for the visual odometry performance.

1) Human Preference (HP): HP is a user perceptual study
that compares the image quality of translated images from dif-
ferent methods through human cognition. Twenty participants
(average age: 30.20, std: 20.46) were shown the translated
results from the evaluation set corresponding to all three differ-
ent tasks (thermal-to-color, day-to-night and summer-to-winter
I2I translation). They were generated by different methods
with the original input images and the ground truth images
grouped together for comparison. We divided each evaluation
set results into five groups to show to five persons among
the 20 participants in turn. Each group’s images are selected
with the best three results corresponding to realism, object
sharpness and scene similarity with unbiased weights (1:1:1)
to ensure an adequate fairness of the evaluation. The total
number of selections was calculated as a final comprehensive
percentage score.

1Overview: https://segments.ai/panoptic/visible/
2Samples: https://segments.ai/panoptic/visible/samples
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TABLE I
HUMAN PREFERENCE, INCEPTION SCORE, FRÉCHET INCEPTION DISTANCE AND DIVERSITY SCORE METRICS ARE USED FOR THE IMAGE QUALITY

EVALUATIONS OF THE THERMAL-TO-COLOR (T2C), DAY-TO-NIGHT (D2N) AND SUMMER-TO-WINTER (S2W) I2I TRANSLATION TASKS. HIGHER HUMAN
PREFERENCE, HIGHER INCEPTION SCORE, HIGHER DIVERSITY SCORE AND LOWER FRÉCHET INCEPTION DISTANCE INDICATE BETTER IMAGE QUALITY.

Method Human Preference ↑ Inception Score ↑ Fréchet Inception Distance ↓ Diversity Score ↑
t2c d2n s2w t2c d2n s2w t2c d2n s2w t2c d2n s2w

MUNIT 2.40% 1.23% 3.36% 2.29 1.50 1.92 98.51 98.79 93.97 0.46 0.65 0.62
BicycleGAN 1.10% 3.14% 2.41% 2.61 1.86 1.81 98.82 97.96 92.23 0.47 0.60 0.61

TSIT 3.22% 10.01% 3.35% 2.64 1.78 1.96 95.38 80.86 81.32 0.43 0.67 0.64
SCGAN 1.23% 6.37% 1.59% 2.59 1.62 1.58 96.83 92.40 86.45 0.39 0.53 0.49

SCGAN+Panoptic − − − 2.62 1.68 1.67 91.21 90.67 83.20 0.42 0.57 0.53
INIT 9.51% 2.24% 11.87% 2.70 1.22 1.84 83.26 76.73 78.90 0.37 0.65 0.57

INIT+Panoptic − − − 2.75 1.53 1.86 79.34 70.82 74.67 0.45 0.66 0.61
FDIT 16.07% 5.93% 8.74% 2.63 1.59 1.90 90.31 72.65 74.23 0.49 0.68 0.60
pSp 11.34% 20.49% 14.78% 2.73 1.68 1.91 79.08 73.86 76.27 0.52 0.70 0.63

InstaFormer 24.68% 18.12% 23.92% 2.80 1.89 1.95 74.71 72.34 73.52 0.51 0.69 0.64
InstaFormer+Panoptic − − − 2.82 1.90 1.98 73.64 70.83 72.19 0.50 0.70 0.67

Ours 30.45% 32.47% 29.98% 2.85 1.93 2.01 72.73 69.40 71.16 0.54 0.72 0.69

2) Inception Score (IS): IS is a popular metric that mea-
sures the quality of the generated images from GANs. It uses
an Inception V3 network pretrained on the ImageNet-1000
classification benchmark and computes a statistics score of
the network’s outputs [74],

IS(G) ≈ exp{ 1

N

N∑
i=1

1000∑
j=1

p(y = j|Ii)log
p(y = j|Ii)
p̂(y = j)

} (10)

where N synthesized images Ii are translated from the

generator model G, p̂(y = j) =
1

N

∑N
i=1 p(y = j|Ii). The

two desirable qualities of the image synthesis are evaluated by
IS, meaning the synthesized images should contain clear and
meaningful objects, and the diverse images from the different
categories in ImageNet should be observed in the synthesized
images.

3) Fréchet Inception Distance (FID): FID improved the
inception score (IS) [69] by incorporating statistics from real
images. Similar to IS, FID also uses an Inception V3 network
pretrained on ImageNet to compute the fréchet distance [75]
between two Gaussian distributions fitted to the synthesized
images and real images [74]. Therefore, the lower the FID is,
the better a generator model is. The fréchet distance is defined
by,

FID2((µ0,
∑0), (µ1,

∑1)) =
∥∥µ0 − µ1

∥∥2

2
+

Tr(
∑0 +

∑1 − 2(
∑0∑1)1/2)

(11)

where (µ0,
∑0) and (µ1,

∑1) denote the mean vector and
the covariance matrix of the Gaussian distribution fitted on the
synthesized and real images, respectively.

4) Diversity Score (DS): DS measures the differences be-
tween the paired images generated from the same input by
computing the perceptual similarity in deep feature space [37].
We used the LPIPS metric [72] for diversity scoring, and the
pretrained AlexNet [76] for feature extraction.

DS(I1, I2) =

n∑
i=1

1

|Λi|
∑
p∈Λi

∥∥∥wi ⊙ (xi
1(p)− xi

2(p))
∥∥∥2

2
(12)

where n layers of unit-normalized features (in channel
dimension) xi are extracted, |Λi| denotes the spatial area of a
feature map, and wi denotes the learned parameters.

5) Panoptic Quality (PQ): PQ was adopted to evaluate the
object recognition performance, and PQ combines segmenta-
tion quality (SQ) and recognition quality (RQ) [18],

PQ =

∑
(p,g)∈TP IoU(p, g)

|TP |︸ ︷︷ ︸
segmentation quality (SQ)

× |TP |
|TP |+ 1

2
|FP |+ 1

2
|FN |︸ ︷︷ ︸

recognition quality (RQ)

(13)

where SQ sums all of the intersection over union (IoU)
ratios for the true positives (TP) and evaluates how closely
matched the predicted segments are with their ground truths.
RQ is a blend of precision and recall, where all TPs, half
False-Positives (FP), and False-Negatives (FN) are divided.
It combines precision and recall to identify how effective a
trained model is at getting a prediction right. PQTh, SQTh, and
RQTh are used on ‘thing’ (Th) categories; PQSt, SQSt, and RQSt

are used on ‘stuff’ (St) categories. PQ series metrics combine
mean IoU (mIoU) in SQ and average precision (AP) in RQ
for a more comprehensive score than the instance segmenta-
tions and object detections. Furthermore, since our framework
was based on panoptic perception, using PQ series metrics
was more appropriate than the traditional object recognition
metrics.

6) Absolute Pose Error (APE): APE was adopted to evalu-
ate the visual odometry performance. It consists of the median
absolute translational error trel and absolute rotational error
rrel as proposed in the KITTI Odometry benchmark [73]. We
ran the DSO [20] method and calculated the APE scores to
evaluate the trajectory similarity between the original frame
sequences (video) and the corresponding translated frame
sequences (video) from different competing approaches.

D. Qualitative Results

For image quality, the human preference results in Table I
show that our approach achieved significantly higher scores
in the human perceptual study of the different summer-to-
winter, day-to-night and thermal-to-color I2I translation tasks
compared with the other approaches. Fig. 6 demonstrates
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Input SCGAN Ours Ground TruthBicycleGAN TSITMUNIT INIT InstaFormerpSpFDIT

Summer −→ Winter

Day −→ Night

Thermal −→ Color
Fig. 6. Comparisons of the image quality of the translated images from different methods with the input and ground truth images. The results of our method
tend to generate more realistic and fine-grained images, and show tiny objects in more detail.

that our PanopticGAN could translate to higher fidelity and
brightly colored images and show tiny objects in more detail.
In contrast, the results from other methods were more blurry,
distorted and missing small objects. For the translated objects,
our results tend to have better sharpness, more natural color
and display a high diversity (e.g., the appearance of cars).
On the other methods side, the object sharpness was not
satisfactory, the style was far from the ground truth and
there was insufficient diversity. Moreover, Fig. 7 also shows a
contrast in the details of the generated objects between our
results and the competing methods. This demonstrated the
superiority of our method on translated objects, producing
sharp boundaries and adequate coloring, and maintaining a

certain diversity, e.g., the types and styles of cars. In the
image quality comparison of Fig. 6, although the results of
the InstaFormer method are more prominent in color contrast,
its object boundaries are not consistent with the ground truth,
and the detailed textures of the objects are not as good as our
results.

For the object recognition performance, we used the panop-
tic segmentation result from the pretrained Panoptic FPN
model on the COCO-Panoptic dataset. We only showed the
object recognition results on the thermal-to-color I2I trans-
lation task, because the translated night images from the
day-to-night I2I translation and the winter images from the
summer-to-winter I2I translation tasks had the disadvantage
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Input SCGAN OursBicycleGAN TSITMUNIT INIT Ground TruthInstaFormerpSpFDIT

Fig. 7. Comparison results on the details of the translated objects from the different approaches with the ground truth images. The results of our method
tend to have better sharpness, a more natural color, and display high diversity.

Input SCGAN Ours Ground TruthBicycleGAN TSITMUNIT INIT InstaFormerpSpFDIT

Fig. 8. The object recognition performance of the translated images from different approaches. In each group, the upper row shows the translated images,
and the lower row shows the results from the corresponding panoptic segmentation. Our method tends to achieve better results, especially for tiny objects.

of insignificant differences for an object recognition com-
parison. As illustrated in Fig. 8, we show the panoptic seg-
mentation comparison results with the baselines. The results
demonstrated that our method could achieve a better object
recognition performance, e.g., the number and boundaries of
the cars, structure of the sky, tree and road, and the areas

with relatively fewer recognition failures. Compared with the
recognition results of the original thermal image, the results of
our translated color images were significantly improved. This
verified the advantages of our method when adapted for image
enhancement.

For the visual odometry (VO) performance, we added
TICCGAN [25] to the baselines since its results showed a
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TABLE II
THE PANOPTIC QUALITY (PQ) CORRESPONDS TO PANOPTIC RECOGNITION ACCURACY, THE SEGMENTATION QUALITY (SQ) CORRESPONDS TO MEAN
INTERSECTION OVER UNION (MIOU) AND THE RECOGNITION QUALITY (RQ) CORRESPONDS TO AVERAGE PRECISION (AP). THESE ARE UTILIZED TO

COMPREHENSIVELY EVALUATE THE PANOPTIC-LEVEL OBJECT RECOGNITION PERFORMANCE OF THE TRANSLATED IMAGES FROM THE DIFFERENT
APPROACHES IN THE THERMAL-TO-COLOR I2I TRANSLATION TASK. THE PQTH , SQTH , AND RQTH METRICS ONLY CONSIDER ‘THING’ (TH)

CATEGORIES; THE PQST , SQST , AND RQST METRICS ONLY CONSIDER ‘STUFF’ (ST) CATEGORIES. (HIGHER IS BETTER)

Method PQ ↑ SQ ↑ RQ ↑ PQTh ↑ SQTh ↑ RQTh ↑ PQSt ↑ SQSt ↑ RQSt ↑
MUNIT [3] 3.3 12.1 4.2 0.6 9.6 0.8 9.0 17.5 11.3

BicycleGAN [1] 4.3 16.8 5.5 0.8 13.1 1.2 10.9 23.9 13.6
TSIT [30] 6.4 17.2 8.1 2.1 13.3 3.3 13.9 26.4 15.3

SCGAN [8] 5.6 15.2 7.4 1.7 11.8 2.6 13.6 22.5 17.4
SCGAN+Panoptic 6.3 16.7 7.8 2.5 12.4 3.7 14.2 24.3 18.8

INIT 7.2 19.6 9.0 3.1 15.4 3.9 16.7 29.1 20.9
INIT+Panoptic 7.7 20.4 9.8 3.3 15.9 4.4 17.3 29.8 21.2

FDIT 7.4 20.1 9.6 3.4 14.7 4.3 17.1 29.6 20.3
pSp 7.8 20.7 10.2 3.8 16.1 4.6 17.6 30.2 20.7

InstaFormer 7.9 21.3 10.8 3.9 16.8 4.8 17.9 30.7 21.2
InstaFormer+Panoptic 8.1 22.0 11.1 4.2 17.1 5.0 18.2 30.9 21.3

Ours 8.3 22.7 11.3 4.2 17.5 5.1 18.4 31.0 21.6

Thermal TICCGAN INIT Ours GroundTruthInstaFormerpSp

Fig. 9. The key point comparisons of the translated frames in the visual odometry for the different approaches. The blue points indicate a large depth value;
the red points indicate a small value; and the green points indicate the initialized value. Our results have more robust points and are more consistent with the
ground truth.

superior performance. Therefore, we selected four methods
(i.e., TICCGAN [25], INIT [2], pSp [33] and InstaFormer
[45]) with the highest performance to compare with our
results. We ran the DSO [20] method on both the origi-
nal thermal frame sequences (video) and the corresponding
translated color frame sequences through different competing
approaches. First, Fig. 9 shows the comparison results of the
extracted key points with the depth maps from the different
methods. The translated frames from our method had more
key points than the baselines, and they could be robustly
obtained and are more consistent with the ground truth.
They facilitated more accurate depth estimations and made
the tracking robust against the brightness variation in the
environment for better 3D reconstructions (3D point clouds)
and estimated scene movements (trajectory). Second, Fig. 10
shows that our method could obtain a better VO performance

in the trajectory, e.g., compared with the results from the other
methods, the trajectories predicted by our method were closer
to the ground-truth trajectories. Note that we measured the
absolute trajectory error because the raw KAIST-MS dataset
[21] was published with some discontinuous video clips, and
the test sequences were relatively short, i.e., less than 50 m.
As seen in the different subgraphs, our results still consistently
showed that the predicted trajectories matched the expected
orientations and poses in the subsequences compared with the
other methods.

E. Quantitative Results

For the image quality, the inception score, fréchet inception
distance and diversity score in Table I show that our approach
achieved superiority in the image quality of the translated
images compared with other approaches. Overall, our method
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Seq. 01 Seq. 02

Seq. 04 Seq. 05

Seq. 03

Seq. 06

Fig. 10. The performance comparisons of the translated subsequences (video) in the visual odometry for the different approaches, mainly for the trajectories.
Our estimated trajectories tend to be more consistent with the ground truth.

TABLE III
THE TREL AND RREL METRICS (LOWER IS BETTER) ARE UTILIZED TO EVALUATE THE VISUAL ODOMETRY PERFORMANCE (TRAJECTORY).

Thermal TICCGAN INIT INIT+Panoptic pSp InstaFormer InstaFormer+Panoptic Ours
Seq. trel rrel trel rrel trel rrel trel rrel trel rrel trel rrel trel rrel trel rrel

01 2.30 2.00 1.24 1.57 1.05 1.56 1.01 1.32 1.41 1.60 1.07 1.24 0.96 1.20 0.89 1.16
02 2.45 1.81 1.75 2.79 1.59 2.86 1.37 2.23 1.45 1.97 1.38 1.71 1.31 1.57 1.28 1.49
03 2.37 3.14 1.31 1.29 1.20 1.38 1.14 1.27 1.17 1.26 1.12 1.20 1.09 1.17 1.03 1.10
04 2.21 2.42 2.03 1.89 1.34 1.60 1.07 1.13 1.08 1.14 0.97 1.01 0.56 0.78 0.32 0.45
05 3.30 2.56 2.44 2.23 2.18 2.46 2.09 1.98 2.23 2.17 2.14 2.09 2.10 1.83 2.05 1.71
06 6.51 7.02 7.41 7.52 4.05 3.17 2.99 3.02 6.21 5.53 3.24 3.36 2.65 2.87 2.16 2.34

outperformed the baselines since we were able to avoid losing
too much information in the translation. The higher inception
score and lower fréchet inception distance of our method
verified that the images generated by our method had higher
fidelity and sharper object information. The higher diversity
score demonstrated that our method was more flexible and
highly robust when a scene was invariant, especially for the
objects generated on the image.

For the object recognition performance, Table II shows that
the object recognition results from our method earned state-
of-the-art scores compared with the competing trained models
on all PQ, SQ, RQ, PQTh, SQTh, RQTh, PQSt, SQSt, and
RQSt object recognition metrics. From the score differences,
the table data demonstrates that our results were uniformly

higher than the state-of-the-art competing methods by a certain
distance, which confirms the superiority of our method.

For the visual odometry performance, since DSO is greatly
affected by the gradient points through the boundaries of
objects, our translation results with high sharpness benefited
the performance of running DSO [20] on the translated videos.
As expected, Table III validated that our method could obtain
a better performance on monocular visual odometry. The
six rows of the table correspond to the comparison of the
predictions produced by running DSO with the ground truth
trajectories for the different videos shown in Fig. 10. We
measured the absolute trajectory error (APE) between the
predicted videos and the ground truth videos. The APE value
of each sequence showed that our absolute translational error
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TABLE IV
THE ABLATION STUDY OF OUR MODEL BY REMOVING THE DIFFERENT LOSSES AND MODULES. Lobj : OBJECT-LEVEL HINGE LOSS; Limg

1 : IMAGE
RECONSTRUCTION LOSS; Lp : PERCEPTUAL LOSS; Mmasking : FEATURE MASKING MODULE; Mpanoptic : PANOPTIC OBJECT STYLE-ALIGN MODULE;
Mclstm : CLSTM MODULE. THE INCEPTION SCORE (IS), FRÉCHET INCEPTION DISTANCE (FID) AND DIVERSITY SCORE (DS) ARE TO EVALUATE THE
IMAGE QUALITY; THE PANOPTIC QUALITY (PQ), SEGMENTATION QUALITY (SQ) AND RECOGNITION QUALITY (RQ) ARE TO EVALUATE THE OBJECT

RECOGNITION PERFORMANCE; THE ABSOLUTE TRANSLATIONAL ERROR (TREL ) AND ABSOLUTE ROTATIONAL ERROR (RREL ) METRICS ARE TO EVALUATE
THE VISUAL ODOMETRY PERFORMANCE.

Metrics w/o Lobj w/o Limg
1 w/o Lp w/o Mmasking w/o Mpanoptic w/o Mclstm Full Model

IS 2.24 2.64 2.66 2.53 2.44 2.63 2.85
FID 110.4 104.3 97.1 101.6 120.7 103.2 72.7
DS 0.47 0.45 0.42 0.47 0.43 0.42 0.54
PQ 5.3 6.4 6.7 6.1 5.9 6.8 8.3
SQ 16.2 20.4 19.4 19.8 18.4 16.7 22.7
RQ 7.7 10.1 10.5 10.2 9.1 11.1 11.3
trel 2.03 1.43 1.50 1.41 2.07 1.81 1.28
rrel 2.10 1.63 1.60 1.67 1.93 1.78 1.37

(trel) and the rotational error (rrel) were lower than the others,
which was consistent with the estimated trajectory comparison
results in Fig. 10. Especially for the frame sequences in discon-
tinuous environments, our subset error consistently remained
the lowest, which demonstrated the robustness of our method
in an environmental scene adaptation. In contrast, the results
from the other methods were not very stable, especially the
result from the TICCGAN method in set 06, which was even
lower than the original thermal result.

F. Ablation Study

We demonstrate the necessity of all the losses and modules
of our proposed model by comparing the inception score (IS)
[69], fréchet inception distance (FID) and diversity score (DS)
[37] for the image quality; panoptic quality (PQ), segmentation
quality (SQ) and recognition quality (RQ) for the object
recognition performance [18]; and absolute translational error
(trel) and absolute rotational error (rrel) for the visual odometry
performance. They were deployed for the experimental results
using several ablated versions of our model trained on the
KAIST-MS [21] dataset of the thermal-to-color translation
task. As shown in Table IV, removing any losses decreased the
overall performance. Removing Lobj and Limg

1 has a lower IS
and DS and a higher FID due to generating low fidelity images
and objects with fewer variations; the PQ, SQ, and RQ were
all significantly decreased because Lobj computed the category
projection scores for the objects; the trel) and rrel values rose
because the DSO method was affected by the gradient points
through the boundaries of the objects. The low sharpness of the
objects also decreased the visual odometry performance. By
removing Lp, the model could not alleviate the problem that
translated images are prone to producing distorted textures.
This inevitably decreased the image quality, object recognition
performance and visual odometry performance. Removing the
Mmasking, Mpanoptic or Mclstm module decreased the overall
performance, which demonstrates their necessity. This was
because Mmasking sharpens object boundaries and Mclstm

sequentially integrates different objects back into the image. In
particular, removing Mpanoptic destroyed the entire foundation
of our proposed panoptic-level framework, and the overall
performance was significantly decreased. Therefore, the above

study results of the losses and modules showed the reasonabil-
ity of our model design.

G. Model Efficiency

Model efficiency can influence practical applications, and is
mainly measured by the computational cost, model complexity
and processing time. The model complexity includes the time
complexity (number of model operations) and space com-
plexity (number of model parameters). The time complexity
determines the training and prediction time of the model, and
can be measured in floating-point operations (FLOPs). It is
defined separately as a computational cost in our paper. The
space complexity determines the number of parameters of the
model. Due to the curse of dimensionality limitation, the more
parameters in the model, the larger the amount of data required
to train the model. It can be measured in parameters (Params),
and we separately defined it as the model complexity in our
paper. For the processing time, we calculated the average
processing time (Avg PT) per image for the different networks
of the competing baselines. As shown in Table V, we present
the model efficiency comparisons between our scores and the
best baselines’ scores. Here, we list the competing baselines,
TSIT [30], INIT [2], INIT+Panoptic, pSp [33], InstaFormer
[45] and InstaFormer+Panoptic. Table V shows that the Params
of our model were lower than those of the other models,
and the FLOPs were only slightly higher than those of the
TSIT and InstaFormer models. For the different I2I translation
tasks (summer-to-winter, day-to-night and thermal-to-color),
our model spent less processing time on average than the other
models. Overall, our method outperformed the baselines, since
we used panoptic-level perception to avoid losing too much
information in the translation. Moreover, our model did not
incur substantial computational costs or model complexity, and
the average processing time kept it competitive.

H. Failure Cases

As shown in Fig. 11, the cars (‘thing’) generated by
our model have better sharpness, more natural color, and
display diversity. However, the generated road (‘stuff’) has
an incorrect texture, i.e., largely different lane markings and
zebra crossings compared with the InstaFormer [45] method.
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TABLE V
THE FLOATING-POINT OPERATIONS (FLOPS) AND PARAMETERS
(PARAMS) EVALUATE THE COMPUTATIONAL COST AND MODEL

COMPLEXITY. THE AVERAGE PROCESSING TIME (AVG PT) PER IMAGE
EVALUATES THE PROCESSING SPEED; THE LOWER, THE BETTER.

Model Params FLOPs Avg PT (ms)
(M) (G) t2c d2n s2w

TSIT 116.1 50.8 19.1 19.7 18.4
INIT 130.3 62.9 22.3 21.0 21.6

INIT+Panoptic 141.6 68.3 22.7 22.3 21.9
pSp 124.7 56.3 18.7 19.2 20.1

InstaFormer 116.8 51.0 17.9 20.4 20.5
InstaFormer+Panoptic 120.3 53.4 18.2 21.4 21.1

Ours 113.6 51.4 17.6 19.0 19.9

Thermal Ours GroundTruthInstaFormer

Fig. 11. An example of the failure cases from the proposed PanopticGAN. In
extreme cases, the high diversity of panoptic objects may result in incorrect
textures being generated to large semantic regions.

Although our method refined each panoptic (‘thing’ + ‘stuff’)
object during the translations to achieve a higher-fidelity
generation, it also allows each object to have high diversity. In
extreme cases, if a ‘stuff’ object with a large area is generated
with incorrect textures and there is a significant difference with
the ground truth, it may result in a decrease in the overall
image quality. Additionally, it may impact the consistency of
the continuous frames to further affect the visual odometry
performance. The ‘stuff’ normally has a larger region than the
‘thing’ and therefore needs to be considered with the entire
image context to avoid producing incorrect textures on large
areas in extreme cases. These challenges will be considered
in our future work.

V. CONCLUSION

In this paper, we presented a pioneering panoptic-level I2I
translation method (PanopticGAN). Compared to the image-
level and instance-level methods, PanopticGAN refines the
object semantics on both the foreground and background to
avoid the semantic information loss. To sharpen the object
boundaries, we proposed a feature masking module to ex-
tract the object-specific representations along the contours.
PanopticGAN can generate higher-fidelity images/videos to
further enhance the performances of the object recognition and
visual odometry tasks. Furthermore, we annotated a panoptic
segmentation dataset for the thermal-to-color translation. The
experimental results showed the superiority of our proposed
method. In future work, we aim to overcome the limitation

that the high diversity of panoptic objects may result in
incorrect textures being generated to large semantic regions
in extreme cases. To this end, we plan to explore introducing
an attention mechanism to consider the entire image context
in the translation. In addition, we also plan to investigate and
extend our proposed method to address the image translations
between SAR (synthetic aperture radar) and optical modalities,
the subsequent SAR image interpretation, as well as the SAR
ship detection, e.g., utilizing enhanced subsequences from
SAR-to-optical image translation to improve ship tracking
performance represents a valuable and meaningful challenge.
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