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ABSTRACT

Recent works have emerged in multi-annotator learning that shift
focus from Consensus-oriented Learning (CoL), which aggregates
multiple annotations into a single ground-truth prediction, to Indi-
vidual Tendency Learning (ITL), which models annotator-specific
labeling behavior patterns (i.e., tendency) to provide explanation
analysis for understanding annotator decisions. However, no evalu-
ation framework currently exists to assess whether ITL methods
truly capture individual tendencies and provide meaningful be-
havioral explanations. To address this gap, we propose the first
unified evaluation framework with two novel metrics: (1) Differ-
ence of Inter-annotator Consistency (DIC) quantifies how well
models capture annotator tendencies by comparing predicted inter-
annotator similarity structures with ground-truth; (2) Behavior
Alignment Explainability (BAE) evaluates how well model explana-
tions reflect annotator behavior and decision relevance by aligning
explainability-derived with ground-truth labeling similarity struc-
tures via Multidimensional Scaling (MDS). Extensive experiments
validate the effectiveness of our proposed evaluation framework.
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+ Computing methodologies — Multi-task learning; Simula-
tion evaluation.

KEYWORDS

Evaluation Framework, Evaluation Metrics, Individual Tendency
Learning, Behavioral Explainability, Annotator Tendencies, Multi-
annotator Learning

1 INTRODUCTION

In real-world multi-annotation scenarios, such as medical image
analysis [19], sentiment analysis [18], and visual perception [45],
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Figure 1: Top: A paradigm focus shift from Consensus-
oriented Learning (CoL) to Individual Tendency Learning
(ITL). A video sample V is processed by multi-annotator
models. CoL aggregates annotators’ predictions into a sin-
gle ground-truth prediction. While ITL models annotator-
specific labeling behavior pattern (i.e., tendency) to give dif-
ferent attention change explanations along video frames for
understanding annotator decisions. Bottom: An evaluation
framework for ITL: Difference of Inter-annotator Consis-
tency (DIC) quantifies how well the model captures annota-
tor tendencies by comparing the structure of predicted inter-
annotator similarities with ground-truth; Behavior Align-
ment Explainability (BAE) evaluates how well model expla-
nations reflect annotator behavior and decision relevance by
aligning explainability-derived with ground-truth labeling
similarity structures via Multidimensional Scaling (MDS).

different annotators often provide different labels to the same sam-
ple [23] due to varying personal backgrounds, subjective interpre-
tations, and expertise levels. These systematic patterns in labeling
behavior—which we term tendencies—represent valuable informa-
tion about individual perspectives, cognitive biases, and domain
expertise.
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As illustrated in Figure 1 (top left), the dominant paradigm in
multi-annotator learning has been Consensus-oriented Learning
(CoL), treating annotator disagreements as noise [17, 35] to be
averaged away through aggregation techniques like PADL [19]
and MaDL [16]. Recent works have emerged in multi-annotator
learning that shift focus from CoL to Individual Tendency Learn-
ing (ITL) (Figure 1, top right) with sophisticated architectures like
QuMAB [38] and TAX [6] that treat annotator diversity as valu-
able information to model individual annotators for capturing their
unique tendencies and providing behavioral explainability.

However, despite promoting architectural innovations in ITL,
there exists no principled evaluation framework to assess whether
these models effectively capture annotator-specific tendencies and
provide meaningful explanations to understand annotator behavior
and decision relevance. This gap limits our understanding of which
ITL approaches genuinely capture annotator tendencies, as opposed
to those that merely optimize for consensus accuracy.

Furthermore, existing explainability assessments in multi-annotator

systems rely primarily on qualitative analysis, lacking quantitative
metrics to evaluate whether learned explanations accurately re-
flect genuine annotator behavioral relationships. A critical question
remains unanswered: How can we systematically evaluate which
methods truly preserve individual annotator tendencies and provide
meaningful behavioral explanations? To address these fundamental
evaluation challenges, we propose a unified evaluation framework
that systematically assesses ITL methods across both tendency
capture and explainability quality dimensions.

The Difference of Inter-annotator Consistency (DIC) metric (Fig-
ure 1, bottom left) quantifies how well the model captures annotator
tendencies by comparing the structure of predicted inter-annotator
similarities with the ground truth. The key insight is that if an
ITL method truly preserves individual tendencies, the patterns of
agreement and disagreement between annotators in predictions
should mirror those in actual annotations.

The Behavior Alignment Explainability (BAE) metric (Figure 1,
bottom right) evaluates how well model explanations reflect anno-
tator behavior and decision relevance by aligning explainability-
derived with ground-truth labeling similarity structures via Multi-
dimensional Scaling (MDS). BAE operates through two complemen-
tary assessments: feature-level evaluation applicable to all ITL meth-
ods through learned representations, and region-level evaluation
for attention-based methods through spatial/temporal attention
patterns, with Figure 1 (bottom right) demonstrating region-level
evaluation. This enables systematic comparison of explainability
quality across different architectural approaches. Our work makes
the following contributions:

e A unified evaluation framework for Individual Ten-
dency Learning (ITL): We address the fundamental evalu-
ation gap in ITL by introducing the first assessment frame-
work that quantifies both tendency capture and explainabil-
ity quality, enabling systematic comparison of ITL methods’
effectiveness in maintaining annotator diversity while offer-
ing meaningful behavioral insights.

¢ A novel metric for tendency capture evaluation: We
propose Difference of Inter-annotator Consistency (DIC),
which quantifies how well the model captures annotator
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tendencies by comparing the structure of predicted inter-
annotator similarities with the ground truth.

e A novel metric for explainability quality evaluation:
We propose Behavior Alignment Explainability (BAE), which
evaluates how well model explanations reflect annotator
behavior and decision relevance by aligning explainability-
derived with ground-truth labeling similarity structures via
Multidimensional Scaling (MDS).

2 RELATED WORK

2.1 Multi-annotator Learning Paradigms

The dominant approach in multi-annotator learning has been consensus-

oriented, aggregating diverse annotations into a single ground truth.
Methods evolved from simple majority voting to sophisticated tech-
niques using probabilistic modeling [8], EM inference [23, 33], and
deep learning [1, 24, 32]. Advanced approaches model annotator
characteristics—reliability, expertise, and confusion patterns—to im-
prove consensus quality [3, 5, 28, 29, 31]. Recent advances explored
nuanced annotator modeling: D-LEMA [20] ensembles annotator
learners, PADL [19] fits Gaussian distributions, and MaDL [16]
models confusion matrices. SimLabel [39] addresses the practi-
cal challenge of missing labels in multi-annotator scenarios. De-
spite architectural innovations, these methods remain consensus-
oriented, treating disagreements as noise to be averaged away
rather than as valuable information to be modeled. The underlying
computer vision and machine learning techniques used in multi-
annotator learning have broader applications across various do-
mains [25, 36, 40, 42—44], though annotator disagreements in multi-
annotator scenarios reflect genuine perspective differences rather
than noise. Some works recognize annotator diversity’s value [26],
particularly in subjective domains where no absolute ground truth
exists. QuUMAB [38] uses learnable queries to model individual pat-
terns with interpretability. However, these efforts lack systematic
evaluation frameworks to assess tendency capture and behavioral
explanation quality.

2.2 Tendency Capture Evaluation Metrics

Evaluation in multi-annotator learning has predominantly focused
on consensus accuracy, measuring how well methods predict ma-
jority votes or expert-defined ground truth [4, 27]. Individual anno-
tator modeling is typically assessed through prediction accuracy
or log-likelihood on held-out labels [23, 34]. Traditional agreement
metrics—Fleiss’ kappa [12], Krippendorft’s alpha [15], and Cohen’s
kappa [30]—measure inter-annotator agreement in raw annotations
but do not assess how well computational methods preserve these
patterns during learning. Recent approaches focused on annotator
modeling quality through likelihood-based metrics [22] or behavior
correlations [10, 14]. However, these assess individual behaviors
rather than inter-annotator relationship structures. Existing met-
rics either evaluate consensus quality or individual accuracy, but
none quantify how well methods maintain inter-annotator relation-
ships that encode perspective diversity. Our proposed Difference
of Inter-annotator Consistency (DIC) metric addresses this gap by
measuring tendency capture through consistency pattern matching.
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Figure 2: Proposed evaluation framework for inter-annotator behavioral analysis. (a) Difference of Inter-annotator Consistency
(DIC) quantifies how well a model preserves annotator tendency by comparing ground-truth and predicted similarity matrices
using Frobenius norm. (b) Behavior Alignment Explainability (BAE) assesses whether model explanations capture true inter-
annotator behavioral structures using Multidimensional Scaling (MDS) projection. BAE is computed at two complementary
levels: feature-level, based on learned annotator representations, and region-level, based on attention-derived focus regions (for
attention-based models). Both measure alignment against the ground-truth consistency matrix.

2.3 Multi-annotator Explainability Assessment

Explainability in multi-annotator learning has received limited sys-
tematic attention, with most works providing qualitative rather
than quantitative evaluation. Existing approaches include feature-
based explanations using learned representations (PADL [19], MaDL [16])
and attention-based explanations showing spatial/temporal pat-
terns (QuMAB [38], TAX [6]), but rely on subjective interpretation
without validation frameworks. Current evaluation faces limita-
tions: broader XAl metrics [7, 21] target single-model scenarios and
cannot assess inter-annotator relationships, while human evalua-
tion [11] remains expensive and difficult to standardize. Our pro-
posed Behavior Alignment Explainability (BAE) metric addresses
this gap, a quantitative assessment applicable to both explanation
types. By comparing explanation-derived similarities with ground-
truth behavioral patterns, BAE systematically evaluates whether
explanations capture genuine annotator relationships regardless of
the underlying mechanism.

3 METHODOLOGY

To evaluate tendency capture and explainability, we propose two
complementary metrics: Difference of Inter-annotator Consistency
(DIC) and Behavior Alignment Explainability (BAE), which assess
both tendency capture and explainability quality, as illustrated in
Figure 2.

3.1 Difference of Inter-annotator Consistency
(DIC)

The fundamental challenge in evaluating tendency capture lies in

quantifying how well a model maintains the complex web of inter-

annotator relationships. We propose DIC as a principled metric that

captures this preservation through consistency pattern matching.

Core Principle. If a model truly preserves annotator tendencies,
the patterns of agreement and disagreement between annotators
in predictions should mirror those in ground-truth annotations.
This forms the theoretical foundation of our consistency-based
evaluation approach.

Mathematical Formulation. Given annotations from M an-
notators, let V. = {yl{k) :ieSgtand Yy = {yi(l) : i € 8§} denote
the complete annotation sets for annotators k and [, where S
represents samples labeled by annotator k. To ensure statistical
reliability, we compute consistency only on overlapping samples
Sk = Sk NS with [Syg| > 7 (minimum threshold).

The ground-truth inter-annotator consistency matrix M €
has elements:

RMXM

myy = k(Yelsys Yilsy,) (1)



where k(-, -) denotes Cohen’s kappa coefficient. Similarly, the pre-
dicted consistency matrix M’ € RM*M j5 computed as:

m;Cl =K(Yk|5kl’ Yl'Skl) (2)

where ¥, = { fo(xi, k) : i € S} represents predicted annotations
from model fj.

As illustrated in Figure 2(a), the DIC metric quantifies the preser-
vation fidelity through direct matrix-level comparison:

IM - M'||p

DIC =
M|

©)
where normalization ensures scale-invariance across datasets. Lower
DIC indicates better tendency capture, with random assignments
producing high values (0.86-0.93) due to inconsistent prediction
patterns, while effective methods achieve substantially lower scores
by maintaining inter-annotator structural relationships.

3.2 Behavior Alignment Explainability (BAE)

BAE assesses whether model explanations accurately capture gen-
uine annotator behavioral relationships by evaluating the structural
alignment between explanation-derived similarities and ground-
truth inter-annotator consistency patterns.

Fundamental Hypothesis. If a model’s explanations truly re-
flect annotator behavior patterns, the similarity relationships de-
rived from individual annotators’ representations (feature-level)
or high-attention regions (region-level) on image batches or video
frames should structurally align with those computed from actual
annotation behaviors. We evaluate this alignment through Multidi-
mensional Scaling (MDS) projection that enables visual comparison
of similarity structures in interpretable 2D feature spaces.

Ground-truth Behavioral Similarity. We define the ground-
truth behavioral similarity matrix S™¢ € RM*M where element
Sg.“e represents the behavioral similarity between annotators i and
J:

Sie = xk(Yils,» Yils,,) 4)

computed over overlapping annotation sets, providing a standard-
ized reference structure for explainability evaluation.

Explanation-based Similarity Computation. As shown in
Figure 2(b), we compute annotator similarity matrices from model
explanations at two complementary levels:

Feature-level Assessment: We extract annotator-specific learned
representations from the penultimate layer for similarity computa-
tion:

Sfﬁat“re = cosine(F?Vg, F;Vg) (5)

where F?Vg = ﬁ 2xes,; freature (%, i) represents the average fea-
ture representation for annotator i. This assessment applies to all
model architectures and evaluates how well learned representations
capture behavioral distinctions.

Region-level Assessment: For attention-based methods, we
conduct complementary region-level analysis to provide additional
behavioral insights. Building upon comprehensiveness score valida-
tion [9]—which confirms that attention patterns focus on decision-
relevant regions through performance comparison after masking
high-attention versus random regions—we compute inter-annotator
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similarities based on attention patterns over spatial/temporal re-
gions:

S;]e.glon = cosine(A?Vg, A;Vg) (6)
where A?Vg = ﬁ Yxes; Attention(x, i) represents the average at-
tention pattern for annotator i across input regions (image patches
for STREET, video frames for AMER). This approach provides a com-
plementary perspective by analyzing fine-grained spatial/temporal
behavioral patterns, offering different analytical insights rather
than consistently superior performance compared to feature-level
assessment.

Alignment Measurement. BAE quantifies the structural align-
ment between explanation-derived and ground-truth behavioral
similarities:

”Smodel _ Strue”F

BAE=1-
lIS*eell

)

where SM04¢l represents either feature-level or region-level sim-

ilarities. Higher BAE values indicate better alignment between
model explanations and true behavioral relationships. MDS projec-
tion enables interpretable visual assessment in 2D feature space,
where spatial proximity reflects behavioral similarity and clustering
patterns reveal whether explanations capture genuine annotator
behavioral relationships.

4 EXPERIMENT

We conduct comprehensive experiments to validate our proposed
evaluation framework and demonstrate its utility in assessing multi-
annotator learning methods. Our evaluation focuses on two objec-
tives: (1) validating that DIC and BAE metrics accurately reflect
tendency capture and explainability quality, and (2) benchmarking
representative methods to uncover insights into multi-annotator
modeling capabilities.

Implementation Details. All image and video inputs are re-
sized to 224x224 and normalized before processing. Each baseline
follows its original training protocol. Experiments are conducted on
four NVIDIA V100 GPUs with consistent hyperparameter settings
across methods.

Datasets. We evaluate on two multi-annotator datasets: AMER
(video-based emotion recognition with 13 annotators) and STREET
(urban image impression assessment with 10 annotators across
five dimensions: Happiness, Healthiness, Safety, Liveliness, and Or-
derliness). The AMER dataset’s complexity in capturing temporal
emotion dynamics aligns with recent advances in time-sensitive
emotion recognition [37, 41]. These datasets provide dense, diverse
annotations crucial for modeling annotator-specific behavior pat-
terns.

Baseline Methods. We benchmark four representative approaches
covering diverse paradigms: D-LEMA (ensemble-based aggrega-
tion), PADL (meta-learning with Gaussian fitting), MaDL (confusion-
matrix-based modeling), and QuMAB (query-based annotator mod-
eling with attention mechanisms).

Evaluation Protocol. Each method is evaluated using our pro-
posed DIC and BAE metrics alongside traditional metrics to demon-
strate the complementary insights provided by our framework.
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Figure 3: Visualization analysis about difference of inter-annotator consistency (DIC) via similarity matrices calculated by
Cohen’s kappa coefficient on the STREET dataset (safety perspective) (10 annotators), darker colors indicate stronger agreement.
Four representative models are compared with the ground truth. Lower DIC scores reflect better preservation of the underlying
consistency structure. The vertical color bar denotes the similarity scale ranging from 0 (no agreement) to 1 (perfect agreement).

Dataset D-LEMA PADL MaDL QuMAB

STREET-(Happiness) 0.62+0.03 048 +0.02 045+0.01 0.43=+0.02
STREET-(Healthiness) 0.59 £0.02 0.52 £ 0.03 0.45+0.03 0.38 + 0.02
STREET-(Safety) 0.36 £0.02 0.32+0.02 0.29+0.01 0.24 +0.03
STREET-(Liveliness) 0.51+0.01 0.43+0.02 0.39+0.02 0.27 +0.02
STREET-(Orderliness)  0.61 £0.02 0.57 £ 0.01 0.59 £ 0.02 0.54 + 0.01
AMER 042 +0.03 0.36+0.01 031%0.01 0.23+0.02

Table 1: Difference of Inter-annotator Consistency (DIC) score comparison across different model architectures on the AMER

dataset and five STREET perspectives. Lower values indicate better preservation of inter-annotator structural tendencies.

STREET (Safety perspective) AMER
Method ACC7? FK 1 PCC 1 DIC | ACC? FK 1 PCC T DIC |
D-LEMA 047 +0.04 051+0.04 046+0.05 036+0.02 078+0.03 054+0.04 049+0.05 0.42+0.03
PADL 0.52+0.03 054+0.03 049004 032£0.02 0.79+£0.02 0.56+0.03 0.52+0.04 0.36+0.01
MaDL 046 +0.02 057+0.02 052+0.03 029+001 080+0.02 058+0.03 0.55+0.03 0.31+£0.01
QuMAB 0.58£0.02 0.61+0.02 0.56+0.02 0.24+0.03 0.84+0.02 0.63+0.03 0.58+0.03 0.23 +0.02

Table 2: Comparison of traditional evaluation metrics and DIC on the STREET dataset (safety perspective) and the AMER
dataset. While ACC, Fleiss’ Kappa (FK), and Pearson Correlation Coefficient (PCC) show limited variation across methods, DIC
reveals significant differences in how well models preserve annotator-specific structural tendencies.

4.1 DIC Assessment

We evaluate DIC effectiveness through visual consistency analysis,
quantitative comparison across architectures, and validation against
standard metrics.

Consistency Pattern Analysis. Figure 3 presents inter-annotator
consistency matrices on the STREET (safety perspective) dataset.
Lower DIC scores indicate better preservation of ground-truth re-
lationships. QUMAB achieves the most faithful reconstruction of
annotator consistency patterns, while D-LEMA shows notable struc-
tural distortions. This visualization demonstrates each method’s
capacity to model annotator-specific relational patterns and pre-
serve individual tendencies.

Quantitative Results. Table 1 presents comprehensive DIC
scores across four architectures on both datasets. QuMAB consis-
tently achieves the lowest DIC scores, indicating a superior ten-
dency capture across visual and affective domains. Compared to
D-LEMA, QuMAB improves DIC by 0.12-0.18 across perspectives,
demonstrating robust capture of individualized labeling patterns
under varying contexts.

Traditional Metrics Comparison. To further highlight the
value of DIC, we compare it with three conventional metrics: (1) Ac-
curacy (ACC) for individual annotator prediction quality; (2) Fleiss’
Kappa (FK) [13] measures the overall inter-annotator agreement
adjusted for chance; (3) Pearson Correlation Coefficient (PCC) [2]
quantifies the similarity between the predicted and true annota-
tion vectors per annotator, reflecting linear trends but not struc-
tural agreement across annotators. Table 2 shows results on AMER
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Figure 4: Visualization analysis about behavior alignment explainability (BAE) via 2D projection of annotator representations
using Multidimensional Scaling (MDS) on the STREET dataset (safety perspective). Results show progressively improved
alignment with higher BAE scores. Region-level QuMAB has a relatively better alignment. Each point denotes an annotator,
and proximity indicates higher behavioral similarity. Same colors denote clusters of annotators with strong agreement (x > 0.6).

Dataset D-LEMA PADL MaDL QuMAB QuMAB-region
STREET-Ha 0.28 £ 0.03 0.33 £0.04 0.35+0.02 0.38 = 0.03 0.41 + 0.02
STREET-He 0.31 £0.04 0.36 £0.02 0.38 £0.03 0.42 + 0.02 0.40 £ 0.03
STREET-Sa  0.39 £0.02 0.44 +0.03 0.47 £0.02 0.54 +£0.02 0.57 £ 0.02
STREET-Li  0.35+0.02 0.38+0.03 0.41+0.04 0.46+0.02 0.45 + 0.03
STREET-Or 0.24 £0.03 0.26 + 0.02 0.25+0.04 0.29 +£0.03 0.31 +0.02
AMER 041+0.03 045+0.02 048+0.01 0.52+0.02 0.55 £ 0.02

Table 3: Behavior Alignment Explainability (BAE) scores across different modeling architectures. Each value measures the
alignment between learned annotator representations and ground-truth behavioral similarity. Region-level BAE (last column)
evaluates inter-annotator similarity based on attention-over-region patterns mapped into feature space. Higher is better.

STREET (Safety perspective) AMER
Method Cos T Grad 7 Comp T BAE 1 Cos T Grad 7 Comp T BAE T
D-LEMA 0.68 £0.05 0.54 +0.07 N/A 0.39+£0.02 0.72+0.04 0.58 £0.06 N/A 0.41 £ 0.03
PADL 0.71+£0.04 0.58 £0.06 N/A 0.44 +0.03 0.74+£0.03 0.61 £0.05 N/A 0.45 + 0.02
MaDL 0.69+£0.06 0.56 £ 0.08 N/A 0.47 £0.02 0.73£0.05 0.59 £0.07 N/A 0.48 £ 0.01
QuMAB 0.74+0.03 0.63+0.05 0.16+0.02 0.54+0.02 0.76+0.02 0.66+0.04 0.17+0.03 0.52+0.02

Table 4: Comparison with alternative explainability metrics. Cos = feature cosine similarity; Grad = gradient correlation; Comp
= comprehensiveness score. BAE more effectively differentiates model behavior than conventional metrics.

DIC |
D-LEMA

0.62 £ 0.03
0.59 £ 0.02
0.36 £ 0.02
0.51 £ 0.01
0.61 £ 0.02
0.42 £ 0.03

BAE 1
D-LEMA

0.28 £ 0.03
0.31 £ 0.04
0.39 £ 0.02
0.35 £ 0.02
0.24 £ 0.03
0.41 £0.03

Dataset Random  Consensus Random

STREET-Ha
STREET-He
STREET-Sa
STREET-Li
STREET-Or
AMER

Table 5: Ablation Study for DIC and BAE metrics. Left: DIC validation showing progression from Random — Consensus —
D-LEMA (limit) — QuMAB (best). Right: BAE validation showing progression from Random — Uniform — D-LEMA (limit) —
QuMAB (best). Both metrics demonstrate clear discriminative power across the performance spectrum.

QuMAB

0.43 + 0.02
0.38 + 0.02
0.24 £ 0.03
0.27 + 0.02
0.54 £ 0.01
0.23 £ 0.02

Uniform

0.18 £ 0.02
0.16 £ 0.03
0.23 £ 0.02
0.19 £ 0.01
0.15 £ 0.04
0.21 £ 0.02

QuMAB

0.38 £ 0.03
0.42 + 0.02
0.54 + 0.02
0.46 + 0.02
0.29 + 0.03
0.52 + 0.02

0.89 £ 0.03
0.91 £ 0.04
0.87 £ 0.02
0.90 £ 0.03
0.93 £ 0.05
0.86 £ 0.02

0.54 £ 0.02
0.58 £0.01
0.51 £0.03
0.56 £ 0.01
0.61 £ 0.03
0.53 £ 0.02

0.05 £ 0.04
0.02 £ 0.03
0.08 £ 0.03
0.04 £ 0.05
0.02 £ 0.06
0.06 £ 0.03

and STREET (safety perspective). While traditional metrics show
limited variation (ranges within 0.06-0.09), DIC reveals more pro-
nounced differences. D-LEMA exhibits moderate traditional scores

but the highest DIC, indicating structural modeling failure. QuMAB
achieves both the best traditional scores and the lowest DIC, con-
firming faithful modeling of individual tendencies. These findings
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confirm that traditional metrics may obscure structural modeling
failures, whereas DIC provides clearer, complementary insights by
explicitly evaluating tendency capture.

4.2 BAE Assessment

We evaluate BAE effectiveness through visual analysis of behav-
ioral alignment structures, quantitative comparison across feature-
level with a complementary region-level perspective, and validation
against alternative explainability metrics.

Behavioral Alignment Analysis. Figure 4 shows MDS pro-
jections of learned annotator representations for STREET (safety
perspective). Ground truth establishes clear behavioral clusters,
with proximity indicating similarity and colors representing high-
agreement groups (k > 0.6). The progression shows: D-LEMA (0.39)
with significant distortion, PADL (0.44) with moderate preservation,
MaDL (0.47) with better structure, and QuMAB (0.54) with closest
ground-truth alignment. QuMAB’s region-level assessment (0.57)
complements feature-level analysis by projecting inter-annotator
similarities—derived from high-attention input regions—into fea-
ture space, offering finer-grained behavioral insight and enhancing
overall evaluation robustness. These comparisons highlight each
method’s capacity to preserve annotator-specific behavioral rela-
tionships through learned representations.

Quantitative Results. Table 3 presents comprehensive BAE
scores across the four multi-annotator learning architectures for
feature-level assessments and QuUMAB’s region-level complemen-
tary assessment. For feature-level analysis, we extract annotator-
specific embeddings from the penultimate layer and compute behav-
ioral similarities based on annotation patterns. QuMAB consistently
achieves the highest feature-level BAE scores, indicating superior
capture of genuine behavioral relationships. Performance improve-
ments vary by domain: substantial gains on Safety (0.15 over D-
LEMA) versus modest improvements on Orderliness (0.05), reflect-
ing varying complexity of behavioral pattern preservation. For
QuMAB’s attention-based explanations, we conduct an exploratory
region-level analysis. Its scores provide complementary insights
to feature-level analysis with modest and variable improvements
(0.02-0.03 across most datasets). This modest enhancement does
not indicate superior performance but rather reflects a different
analytical perspective that captures fine-grained spatial/temporal
behavioral patterns. The complementary nature of these two as-
sessment levels enables more robust, comprehensive evaluation of
behavioral alignment.

Alternative Explainability Metrics Comparison. We also
compare BAE with three existing metrics for evaluating explanation
quality: (1) Feature Cosine Similarity for basic representation align-
ment; (2) Gradient Correlation for feature importance alignment;
(3) Comprehensiveness Score validates attention faithfulness by
measuring performance drops after masking high-attention regions
versus random regions, applicable only to attention-based methods
like QUMAB. Table 4 shows results on AMER and STREET (safety
perspective). Additional results for the other STREET perspectives
are provided in the Supplementary Material. While Feature Cosine
Similarity and Gradient Correlation show consistently high scores

with minimal variation (std = 0.02-0.04), BAE demonstrates substan-
tially higher discrimination (std = 0.05-0.06), revealing clearer dis-
tinctions between methods’ explainability capabilities. Traditional
metrics capture surface-level similarities rather than meaningful be-
havioral differences. BAE’s enhanced sensitivity identifies methods
with similar feature representations that fail to preserve essential
behavioral relationship structures, providing complementary in-
sights by explicitly evaluating behavioral alignment preservation
across all architectural approaches.

4.3 Ablation Study

We conduct controlled ablation experiments using carefully de-
signed baseline scenarios representing extreme cases of tendency
capture and explainability quality to validate DIC and BAE effec-
tiveness and sensitivity.

DIC Ablation Analysis. We evaluate DIC sensitivity across
the performance spectrum using controlled baselines: Random sim-
ulates completely unstructured behavior with uniformly random
label assignments; Consensus assigns majority-vote labels to all
annotators, eliminating individual variations; D-LEMA provides a
representative baseline with limited modeling capacity; QuMAB
achieves the strongest results. As shown in the left columns of Ta-
ble 5 (left columns) shows DIC effectively captures the performance
hierarchy: Random yields highest scores (0.86-0.93), Consensus pro-
duces moderate scores (0.51-0.61), D-LEMA shows improved perfor-
mance (0.36-0.62), while QuMAB achieves lowest scores (0.23-0.54).
This clear ordering validates DIC’s ability to distinguish meaning-
ful differences in tendency capture across the entire performance
spectrum.

BAE Ablation Analysis. We validate BAE discriminative power
using controlled representation scenarios: Random generates inde-
pendent random feature vectors (near-zero similarities); Uniform
assigns identical representations to all annotators (perfect similarity
without behavioral differences); D-LEMA and QuMAB are selected
as representative models exhibiting the lowest and highest perfor-
mance, respectively. Table 5 (right columns) demonstrates BAE ef-
fectiveness: Random produces the lowest scores (0.02-0.08), Uniform
achieves moderate scores (0.15-0.23), D-LEMA shows improved
alignment (0.24-0.41), and QuMAB reaches the highest scores (0.29-
0.54). This progression confirms BAE’s sensitivity to explanation
quality differences and validates its utility for evaluating behavioral
alignment across diverse modeling approaches.

5 CONCLUSION

We proposed the first unified evaluation framework for Individual
Tendency Learning (ITL) with two novel metrics: (1) Difference of
Inter-annotator Consistency (DIC) quantifies tendency capture by
comparing predicted and ground-truth inter-annotator consistency
structures; (2) Behavior Alignment Explainability (BAE) evaluates
explainability quality through aligning explainability-derived with
ground-truth labeling similarity structures via Multidimensional
Scaling (MDS). Extensive experiments on different datasets across
different model architectures validate the effectiveness of our pro-
posed evaluation framework. A potential enhancement would be
incorporating human-derived behavioral signals into the evaluation
framework. While eye-tracking can capture annotators’ attention



patterns over image or video content, such approaches remain high-
cost and difficult to scale. In future work, we aim to explore scalable
alternatives for acquiring such signals, which would advance ITL
and benefit the broader research community.
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