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ABSTRACT
Multi-annotator tendency learning aims tomodel the specific behav-
ior patterns of each annotator. However, existing methods mainly
focus on the tendencies of individual annotators, overlooking the
correlations between different annotators, leading to inadequate
modeling of the label distribution of the original dataset. Addition-
ally, current methods cannot visualize the decision-making process
of each annotator, resulting in a “black-box” output. Therefore, we
propose an explainable multi-annotator tendency learning frame-
work, QuEMAT. Specifically, we preserve both individual annotator
tendencies and the correlations between different annotators, max-
imizing the retention of label distribution in the original dataset.
Meanwhile, we visualize each annotator’s tendency, providing in-
terpretable insights into the behavior of each annotator. Moreover,
the sparse per-annotator labels in existing datasets hinder the ad-
vancement of this area. To this end, we additionally construct two
large-scale datasets: AMRE and STREET. It is worth noting that
AMRE is the first multi-annotator multimodal dataset in this field.
Extensive experiments show that our model is more effective than
the latest methods.

CCS CONCEPTS
• Computing methodologies→Multi-task learning.

KEYWORDS
Multi-annotator learning, Annotator tendency, Multi-annotator
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1 INTRODUCTION
Reliable annotations of training samples are crucial in machine
learning. Reliable here means that the same concept is always an-
notated with the same label. However, in real-world scenarios,
different annotators often provide distinct interpretations of the
same sample [26, 32]. This multi-annotator scenario is particularly
common in fields such as medical image analysis [19], sentiment
analysis [17], and visual perception [42], where subjective judg-
ment and varying levels of expertise lead to significant differences
between annotators, thereby hindering label consistency.
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Figure 1: Method comparison. In this figure, we take five an-
notators 𝐴𝑖 , 𝑖 ∈ {1, · · · , 5} as an example. We use𝑀𝑖 and 𝑉𝑖 to
represent the model and visualization results for annotator
𝐴𝑖 , respectively. Existing methods overlook the correlations
of the inter-annotator tendencies and fail to explain the be-
havior patterns of each annotator. In contrast, our method
addresses these issues.

To learn more reliable models in multi-annotator scenarios, re-
searchers introduce a task called multi-annotator learning. Multi-
annotator tendency learning aims to model the specific behavior
patterns of each annotator to capture their individual preferences
and provide interpretability. In contrast, multi-annotator learning
mainly utilizes extracted annotator features for specific tasks, em-
phasizing task objectives without explaining individual annotator
factors. Most multi-annotator learning approaches are typically
dedicated to simultaneously learning different characteristics (e.g.,
confusion mode [34], agreement [37], expertise level [12]) from
multiple annotators, then applying them to specific tasks, e.g., clas-
sification, segmentation, or multi-annotator aggregation, through
majority voting or probabilistic aggregation. While these methods
have shown success in certain applications, they often treat annota-
tor discrepancies as noise rather than valuable information [14, 40].
Existing research on multi-annotator tendency learning is currently
sparse, some recent works similar to it have attempted to model
individual annotator behaviors through various techniques such as
confusion matrices [11] or neural networks with annotator-specific
parameters [9] to understand more about individual annotator ten-
dencies, thereby helping to better implement specific tasks.

However, as shown in Figure 1, current multi-annotator ten-
dency learning methods have several issues. First, existing methods
focus merely on the trends of individual annotators. For example,
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they build independent models [10], distributions [19], or confu-
sion matrices [42] for each annotator to capture annotator-specific
tendencies. These methods overlook the correlations between an-
notators, leading to inadequate modeling of the label distribution
in the original dataset. Second, existing models [4] lack clear in-
terpretability, or they only implicitly reveal trends where certain
annotators play a larger role in the labeling process [6].

To address these challenges, we propose QuEMAT, an attention-
based multi-annotator model. Firstly, it leverages learnable queries
in the Q-Former (query transformer) [16] to model specific annota-
tors, using a cross-attention module to interact with input features
and capture individual tendency patterns of the intra-annotator. Si-
multaneously, all queries can interact as a whole in a self-attention
module, making them visible to each other to learn the correlations
of the inter-annotator tendencies. This avoids the limitations of
only learning intra-annotator tendency patterns in isolation and
enhances the interpretability of inter-annotator correlations, while
also reducing the cost of building separate models for each an-
notator. Secondly, benefiting from the attention architecture of
Q-Former, cross-attention interactions between annotator-specific
queries and input features capture each annotator’s tendency to fo-
cus on the input information. This interaction is explicitly visualized
through attention weights, clearly indicating which parts and to
what extent differences in the input information are emphasized by
each annotator’s tendency. This greatly improves the interpretabil-
ity of each annotator’s pattern and enhances the transparency of
the model.

However, even with efficient modeling methods, multi-annotator
tendency learning still faces the challenge of data sparsity in prac-
tical applications [22]. Although crowdsourcing platforms have
numerous annotators for annotating, only a very small subset of
samples are provided consecutive annotations with consistent IDs.
This sparsity in consecutive annotator labels poses a significant
challenge for learning reliable annotator-specific tendencies. To
this end, we constructed two large-scale datasets: STREET (city
impression evaluation) and AMER (video emotion recognition),
each providing substantial consecutive labels per annotator ID,
respectively, offering valuable open-source resources to the com-
munity. It is worth noting that AMRE is the first multi-annotator
multimodal dataset in this field. Our work makes the following key
contributions:

• Anovelmulti-annotator tendency learning framework:
We propose an attention-based model that uses learnable
queries to model individual annotators while learning inter-
annotator correlations, providing explicit interpretability
through visualization of attention weights to make it possi-
ble to understand whether the model has effectively learned
the tendencies of individual annotators.

• An insight about multi-annotator tendency learning:
After research, we found that through modeling the behavior
patterns of individual annotators, we can gain more infor-
mation about the annotator’s tendency, thereby helping to
better implement specific tasks.

• Two large-scale datasets with dense per-annotator la-
bels: We contribute two new datasets: STREET (city im-
pression evaluation) and AMER (video emotion recognition),

providing averages of 4,300 and 3,118 annotations per anno-
tator respectively, alleviating the sparse per-annotator labels
challenge in multi-annotator tendency learning research.

2 RELATEDWORK
2.1 Multi-annotator Tendency Learning Task
To the best of our knowledge, the multi-annotator tendency learn-
ing task problem has not yet been investigated. Traditional multi-
annotator learning tasks focus on estimating true labels from mul-
tiple noisy annotations. Such as early probabilistic models [8], EM
algorithms [39], Gaussian models [30], and biased estimation [38].
Tanno et al. [35] proposed modeling annotator confusion matrices
as learnable parameters in neural networks. Cao et al. [3] introduced
max-MIG to learn frommultiple annotators. NEAL [5] employs neu-
ral expectation-maximization to jointly learn annotator expertise
and true labels. Later methods used probabilistic frameworks to ag-
gregate multiple annotations into a ground truth label by confusion
matrix [34], agreement distribution [37], and Gaussian distributions
[19]. These methods often treat individual annotator discrepancy as
noise rather than valuable information [14, 40]. In contrast, multi-
annotator tendency learning by our defined aims to model each
annotator to capture specific behavioral patterns and providing
interpretability. Some recent works similar to it have attempted to
model individual annotator behaviors through confusion matrices
[11] or annotator-specific network parameters [9] to understand
more about individual annotator tendencies, thereby helping to
better implement specific tasks. However, these approaches lack
interpretability.

2.2 Multi-annotator Datasets
Learning reliable annotator-specific tendencies typically requires
sufficient consecutive individual annotator labels. However, most
existing multi-annotator datasets suffer from sparsity labels, with
each annotator typically labeling only a small portion of the data.
CIFAR-10H [23], based on the CIFAR-10 [15] dataset, includes 10,000
test samples labeled by 2,571 annotators, but each annotator ID
has on average only about 200 consecutive labels. LabelMe [27]
includes an average of approximately 42.4 consecutive labels per
annotator ID. Audio dataset Music [29] contains an average of
about 46.1 consecutive labels. The medical datasets are commonly
used in multi-annotator studies, consecutive annotator labels are
even sparser. QUBIQ [13], a dataset for quantifying uncertainty in
biomedical image segmentation, includes four distinct segmenta-
tion datasets with an average of only 40 samples, and even then,
annotator IDs have only around 8 consecutive labeled samples each.
This sparsity poses a significant challenge for the multi-annotator
tendency learning task. To this end, we contribute two large-scale
datasets: STREET and AMER, averaging 4,300 and 3,117.8 consecu-
tive labels per annotator ID, respectively. These datasets contribute
significant open-source resources that we believe will benefit the
research community.

2.3 Annotator Tendency Learning Framework
Previous studies typically construct independent models for each
annotator to learn their specific behavioral patterns [10], or build
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Table 1: Dataset comparison. Compared to existing multi-annotator datasets, our dataset contains a greater number of samples
annotated by each annotator, which helps promote annotator tendency learning. Meanwhile, AMER is the first multimodal
multi-annotator dataset.

Dataset Dataset description Modality # samples per annotator
QUBIQ-kidney [20] kidney image image 24
QUBIQ-tumor [20] brain tumor image image 32
QUBIQ-growth [20] brain growth image image 39
QUBIQ-prostate [20] prostate image image 55
CIFAR-10H [24] object recognition image 200
MUSIC [28] music genre classification audio 2∼368
MURA [25] radiographic image image 556
RIGA [1] retinal cup and disc segmentation image 750
LIDC-IDRI [2] lung nodule image image 1,018

STREET (Ours) city impression evaluation image 4,300
AMER (Ours) video emotion recognition audio, video, text 970∼5,202

separate distributions based on input features to fit each annota-
tor [19], or use individual confusion matrices to approximate each
annotator’s tendencies [42]. These independent models lead to in-
creased computational costs, and completely isolated modeling of
annotators’ tendencies is not beneficial for interpreting relation-
ships among annotators’ tendencies. Meanwhile, recent research
typically only provided implicit interpretability for annotator ten-
dencies, mainly by associating annotator influences with model
outcomes. For instance, TAX [6] explains pixel-level assignment
decisions for semantic segmentation by associating learned convo-
lutional kernels with a prototype library representing annotator
tendencies. MAGI [43] leverages multiple annotators’ explanations
addressing challenges of noisy annotations and missing annotator
correspondences. Schaekermann et al. [31] revealed how factors
like expert background and data quality contribute to annotation
disagreements. However, this makes it difficult to explicitly show
which specific elements in the scene each annotator, based on their
tendencies, focuses on. To mitigate these issues, we proposed an
efficient and interpretable framework for multi-annotator tendency
learning. We use learnable queries to model both intra-annotator
patterns and inter-annotator correlations, avoiding isolated model-
ing of each annotator while providing explicit interpretability of
the discrepancy in annotator tendencies.

3 DATASET CONSTRUCTION
This paper focuses primarily on annotator tendency learning. For
this task, the most important factor is the number of samples an-
notated by each annotator. Table 1 compares the current multi-
annotator datasets. We observe that in existing datasets, the number
of samples annotated by each annotator is relatively limited, and
there is a lack of multi-annotator multimodal datasets. For example,
in the RIGA dataset [1], each annotator labels 750 samples; while
in the CIFAR-10H dataset [24], each annotator labels 200 samples.
These datasets are insufficient for annotator tendency learning. To
fill this gap, we introduce two new datasets: the city impression as-
sessment dataset STREET and the multi-modal emotion recognition
dataset AMER. These datasets provide enough single-annotator an-
notations to meet the requirements of annotator tendency learning.

(1) STREET is an urban perception dataset withmulti-annotators,
which contains 4, 300 high-resolution images covering various ur-
ban elements, such as streets, public spaces, and infrastructure.
The images and labels come from a study to capture emotions as-
sociated with cities.1 Each image is annotated by 10 annotators,
assessing five perception dimensions: happiness, healthiness, safety,
liveliness, and orderliness, using a 7-point scale (−3 to +3). This
multi-annotator dataset provides comprehensive human perception
data for urban environments, enabling the quantitative analysis of
environmental features and their emotional impact.

(2) AMER is a multimodal emotion dataset, which contains
5, 207 video samples. This dataset is derived from MER2024 [18],
which offers multi-annotator emotion labels. The AMER dataset
consists of 13 annotators, where each annotator selects the most
likely label from 8 candidate labels, i.e., worry, happiness, neutrality,
anger, surprise, sadness, other, and unknown. Among all annota-
tors, 10 annotators show consistent participation, each providing
approximately 970 to 1, 096 labels, while the remaining 3 annotators
contribute over 5, 000 labels each. This rich multi-annotator setup
provides reliable emotion annotation results and allows for a robust
evaluation of emotion recognition performance.

4 METHODOLOGY
4.1 Overview
QuEMAT mainly consists of two key parts: query-based specific
annotator modeling and attention-based interpretable tendencies.
Based on the classification task, they are achieved by a pre-trained
image encoder, the annotator-specific learnable queries represent-
ing the tendencies of multi-annotators, a frame and video Q-Former,
and the classifiers for corresponding annotators, as shown in Fig-
ure 2.

Note that this architecture is specifically designed for video
inputs from the AMER dataset. For experiments on the STREET
image dataset, we replace the frame and video Q-Former modules
with a single image Q-Former architecture, which is detailed in
the supplementary material. Also, all experiments involving the

1We are currently negotiating to publish the dataset.
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Figure 2: Illustration of our QuEMAT architecture. A frozen pre-trained encoder extracts frame features, which are compressed
through the Frame Q-Former. With added frame position embedding, these interact with 1, . . . , 𝑛 annotator-specific learnable
queries in the VideoQ-Former through cross-attention, producing annotator-specific features for classification. Each annotator’s
cross-attention weights from Video Q-Former represent annotator tendencies and are visualized for interoperability.

STREET image dataset consistently employ this image-specific
architecture as described in the supplementary material.

4.2 Query-based Specific Annotator Modeling
We proposed a query-based specific annotator modeling approach
inspired by Q-Former [16]. As Fig. 2 illustrates, given a video in-
put 𝑉 ∈ R𝑇×𝐻×𝑊 ×3, a frozen pre-trained image encoder [33] first
extracts frame features, which are then further compressed by the
image Q-Former using a specific number of compression queries,
typically 32, to alleviate subsequent computational costs [16]. The
frame position embedding is then added and input to the video
Q-Former. Subsequently, we define the unique tendency pattern
for annotator 𝐴𝑘 (𝑘 = 1, . . . , 𝑛) through each learnable query in
a Q-Former, then all annotator-specific queries in cross-attention
simultaneously interact with input features to capture their diverse
tendencies and obtain annotator-specific feature. Finally, the spe-
cific annotator features are mapped through a fully connected layer
to an appropriate feature dimension and then connected to each
annotator’s corresponding classifier to output classification results.
Note that although we assign a separate query for each annota-
tor, they are processed by a multi-head attention module, typically
with 12 heads. This setup provides each query with diverse per-
spectives. Our experiments have verified that the learned tendency
information is as expected and effective.

This design not only significantly alleviates the overhead of
building a separate model for each annotator but also avoids learn-
ing each annotator’s pattern in isolation while ignoring the inter-
annotator’s correlations. That is, the attention mechanism based
on Q-Former enables each independent annotator query to learn
relationships between annotators in a self-attention module, then
while interacting with input features through cross-attention to
capture individual tendencies. This significantly improves over the
limitations of current methods, achieving efficient modeling for
each annotator while enhancing the interpretability of annotators’
tendency relationships.

4.3 Attention-based Interpretable Tendency
Our method benefits from the attention architecture of Q-Former.
By defining each annotator’s specific tendency pattern with learn-
able queries, our approach leverages cross-attention interactions
between annotator-specific queries and input features, capturing
each annotator’s distinct focus on the input information, output
in the form of attention weights. This attention weight enables
clear and explicit visualization of the different parts and degrees of
input information that each annotator focuses on based on their ten-
dencies, greatly enhancing the ability to verify whether the model
has effectively learned each annotator’s pattern and improving the
transparency of the overall model. As shown in Figure 2, the atten-
tion to video input is based on all frames of the video. Different
annotators’ varying levels of attention to different frames indicate
their tendency differences. The comparison curves more intuitively
illustrate these differences: annotator 1 shows more attention to
the final frames, while annotator n focuses more on the middle
frames. This task is video emotion classification. Considering the
annotation results and observing the video sample, we see that both
annotators labeled emotions like anger and worry. The frames they
focus on correspond to segments in the video that also align with
these expected emotions.

4.4 Loss Function
Finally, as shown in Figure 2, the total training loss Ltotal for the
proposed multi-annotator classification model, QuEMAT, is defined
as the sum of individual cross-entropy losses for each annotator:

Ltotal =
𝑛∑︁

𝑘=1
L(𝑦𝑘 , 𝑦𝑘 ), (1)

where each annotator 𝐴𝑘 has a specific predicted probabilities
𝑦𝑘 ∈ [0, 1]𝐶 , a reference label 𝑦𝑘 ∈ {0, 1}𝐶 in one-hot vector repre-
sentation, and 𝐶 is the number of classes.
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5 EXPERIMENT
We conduct extensive experiments to evaluate our QuEMAT with
competing approaches, primarily focusing on individual annotator
modeling, inter-annotator consistency distributions, and demon-
strating our advantages in providing explicit interpretability of
annotator tendencies. To verify the effectiveness of QuEMAT, we
introduce three representative baselines: D-LEMA [21] is an en-
semble architecture for multi-annotator learning; PADL [19] uses
Gaussian distribution fitting each annotator’s tendency pattern;
MaDL [11] employs individual confusion matrices to approximate
each annotator’s tendency. Meanwhile, to verify that the model has
truly learned the tendency information rather than the features
from the encoder, we specifically set a Base baseline that only re-
tains the encoder and classifiers as a reference. We evaluate and
discuss results on two novel datasets we introduced with relatively
large-scale per-annotator labels. Note that additional experiments
are provided in the supplementary material such as additional re-
sults and model efficiency, etc.

5.1 Implementation Details
For the model pipeline (see Figure 2), we use ViT-G/14 from EVA-
CLIP [33] as the encoder, with the image Q-Former initialized from
InstructBLIP [7] and the video Q-Former initialized from Video-
LLaMA [41]. The input image/video is resized to 224×224 and fur-
ther normalized. The number of query tokens matches the number
of annotators, and each annotator’s classifier model uses an MLP.
During training, we use the AdamW optimizer with an initial learn-
ing rate of 1e-4, weight decay of 0.01, and a maximum gradient
norm of 1.0 for gradient clipping. A linear warmup strategy is ap-
plied for the first 20% steps followed by cosine learning rate decay.
We set the maximum number of epochs to 200, with early stopping
(patience being 25) to prevent overfitting. To accelerate training,
the model is trained using distributed data parallel (DDP) on four
NVIDIA V100 GPUs.

5.2 Evaluation Metrics
For evaluating multi-annotator tendency learning, accuracy is the
fundamental metric. To show the model’s capability to capture
annotators’ tendencies, we propose a new metric, coined difference
of inter-annotator consistency.

Difference of inter-annotator consistency (DIC) is utilized
to measure how well a model preserves the inherent disagreement
patterns among annotators. The annotations given by different an-
notators differ, and their consistency can be measured by Cohen’s
kappa coefficient [36]. Let 𝑌𝑘 and 𝑌𝑙 denote the set of all annota-
tions by annotators 𝐴𝑘 and 𝐴𝑙 . We can compute inter-annotator
consistency matrix 𝑀 whose (𝑘, 𝑙)-th element𝑚𝑘𝑙 is given by

𝑚𝑘𝑙 = 𝜅 (𝑌𝑘 , 𝑌𝑙 ), (2)

where 𝜅 (𝑌𝑘 , 𝑌𝑙 ) gives Cohen’s kappa coefficient for 𝑌𝑘 and 𝑌𝑙 . We
can also compute the inter-annotator consistency matrix 𝑀′ but
for predictions 𝑌𝑘 and 𝑌𝑙 , where its (𝑘, 𝑙)-th element𝑚′

𝑘𝑙
is given

by

𝑚′
𝑘𝑙

= 𝜅 (𝑌𝑘 , 𝑌𝑙 ) . (3)

Ideally, these matrices should be the same, but due the model’s bias
can cause discrepancy between them. We quantify such differences
in inter-annotator consistency by

DIC = ∥𝑀 −𝑀′∥𝐹 , (4)

where ∥ · ∥𝐹 denotes the Frobenius norm. A lower DIC indicates
that the model successfully captures each annotator’s tendency
(with respect to the others).

5.3 Quantitative Results
For individual annotator modeling, the accuracy scores in Tables 2
and 3 demonstrate that our method achieves higher scores on both
datasets: STREET (covering five perception dimensions: happiness,
healthiness, safety, liveliness, and orderliness) and AMER for each
annotator. Particularly, our method consistently outperforms other
models in terms of average accuracy. In addition, by comparing
the results with the Base baseline, it can be proved that the model
learned effective annotator information. For inter-annotator consis-
tency, the DIC scores in Table 4 also show that ourmethod surpasses
baseline approaches on both STREET and AMER datasets. We in-
directly quantify each annotator’s specific tendency through the
inter-annotator consistency matrices. These comparative results
verify the superiority of our proposed method in modeling individ-
ual annotators and inter-annotator consistency distributions.

5.4 Qualitative Results
We qualitatively examine the interpretability of annotator tenden-
cies by visualizing the attention weights over frame features2 with
respect to each annotator’s query in the cross-attention mechanism
in Q-formers.

As shown in Figure 3, on the AMER dataset, annotators demon-
strate diverse preferences through their varying attention to differ-
ent frames. The comparison curves illustrate these differences more
intuitively: Annotator 1 shows higher attention to the final frames
(45-50), while Annotator 13 focuses more on the early frames (5-10),
the same as Annotator 4. Annotator 10 shows a different focus.
For this video emotion classification task, Annotator 1 predicted
“sad”, while Annotator 4 and 13 predicted “worried”. Analysis of the
original video and Ground Truth labels. Annotators’ focus meets
the expectations. The frames highlighted by our model’s learned
annotator tendencies correspond to consistent emotional cues in
the video, validating both the effectiveness of our model and its
superior interpretability.

As illustrated in Figure 4, on the STREET dataset, annotators
exhibit different tendencies through their varying attention to dis-
tinct semantic elements within the same input image. The high-
lighted attention regions reveal these differences: Annotators 3,
and 7 centralized focus more on the sculpture in the image, while
other annotators show less attention to this element. This task in-
volves impression evaluation across five dimensions (happiness,
healthiness, safety, liveliness, and orderliness) on a scale from −3
to +3. Analyzing the original image content and prediction results
reveals that Annotators 3 and 7 gave high ratings on happiness
and healthiness dimensions, which aligns with the peaceful and

2For the STREET dataset, the attention weights over patch features.
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Figure 3: We visualize the interpretable annotator tendencies on the AMER dataset. The attention patterns of multi-annotators
reveal distinct preferences, where annotator 1 exhibits notably high attention to final frames (containing different characters)
compared to annotators 4 and 13 focusing on the middle frames.

Figure 4: We visualize the interpretable annotator tendencies on the STREET dataset. The attention patterns of 10 annotators
reveal distinct preferences, where annotators 3, and 7 exhibit centralized attention to the statue compared to other annotators.
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Table 2: For individual annotator modeling performance, we use the Accuracy metric to evaluate our method and baselines on
the AMER dataset for each annotator 𝐴𝑘 , k = 1, . . . , 13, and report the average performance (Avg). Higher is better.

Methods 𝐴1 𝐴2 𝐴3 𝐴4 𝐴5 𝐴6 𝐴7 𝐴8 𝐴9 𝐴10 𝐴11 𝐴12 𝐴13 Avg

Base 0.30 0.29 0.43 0.25 0.24 0.20 0.26 0.19 0.34 0.10 0.41 0.48 0.19 0.28
D-LEMA [21] 0.86 0.88 0.85 0.87 0.89 0.86 0.88 0.87 0.85 0.86 0.45 0.51 0.33 0.84
PADL [19] 0.89 0.90 0.88 0.93 0.87 0.91 0.86 0.94 0.89 0.88 0.47 0.54 0.35 0.87
MaDL [11] 0.93 0.91 0.90 0.89 0.90 0.88 0.90 0.89 0.87 0.97 0.50 0.53 0.37 0.88
Ours 0.94 0.93 0.93 0.94 0.94 0.92 0.93 0.95 0.93 0.93 0.59 0.61 0.40 0.92

Table 3: For individual annotator modeling performance, we use the Accuracy metric to evaluate our method and baselines on
the STREET dataset for each annotator 𝐴𝑘 , k = 1, . . . , 10, and report the average performance (Avg). Higher is better.

Perspectives Methods 𝐴1 𝐴2 𝐴3 𝐴4 𝐴5 𝐴6 𝐴7 𝐴8 𝐴9 𝐴10 Avg

Happiness

Base 0.80 0.12 0.27 0.38 0.56 0.35 0.44 0.44 0.31 0.55 0.42
D-LEMA [21] 0.85 0.71 0.44 0.36 0.70 0.43 0.46 0.54 0.41 0.47 0.54
PADL [19] 0.93 0.74 0.48 0.53 0.57 0.47 0.42 0.51 0.50 0.60 0.58
MaDL [11] 0.91 0.77 0.44 0.38 0.70 0.47 0.46 0.54 0.48 0.47 0.56
Ours 0.94 0.80 0.54 0.55 0.69 0.51 0.53 0.54 0.52 0.64 0.63

Healthiness

Base 0.77 0.19 0.14 0.47 0.87 0.36 0.43 0.44 0.51 0.54 0.47
D-LEMA [21] 0.83 0.77 0.44 0.43 0.87 0.41 0.44 0.46 0.55 0.46 0.57
PADL [19] 0.92 0.72 0.55 0.44 0.84 0.47 0.46 0.44 0.52 0.55 0.59
MaDL [11] 0.89 0.77 0.44 0.44 0.90 0.41 0.44 0.46 0.55 0.46 0.58
Ours 0.92 0.75 0.56 0.52 0.90 0.49 0.48 0.54 0.64 0.61 0.64

Safety

Base 0.58 0.65 0.36 0.36 0.61 0.37 0.56 0.40 0.32 0.53 0.47
D-LEMA [21] 0.62 0.69 0.27 0.41 0.50 0.46 0.48 0.40 0.35 0.50 0.47
PADL [19] 0.72 0.78 0.24 0.44 0.69 0.44 0.53 0.42 0.46 0.48 0.52
MaDL [11] 0.63 0.63 0.27 0.32 0.61 0.38 0.46 0.42 0.36 0.52 0.46
Ours 0.72 0.80 0.38 0.48 0.71 0.54 0.53 0.50 0.52 0.58 0.58

Liveliness

Base 0.79 0.60 0.53 0.46 0.76 0.30 0.35 0.36 0.53 0.57 0.53
D-LEMA [21] 0.79 0.58 0.37 0.42 0.74 0.38 0.44 0.41 0.50 0.46 0.51
PADL [19] 0.85 0.66 0.56 0.46 0.75 0.44 0.43 0.47 0.56 0.57 0.58
MaDL [11] 0.78 0.56 0.35 0.40 0.76 0.34 0.48 0.42 0.47 0.47 0.50
Ours 0.87 0.68 0.57 0.53 0.80 0.49 0.48 0.51 0.62 0.61 0.62

Orderliness

Base 0.50 0.64 0.39 0.45 0.86 0.31 0.39 0.34 0.31 0.49 0.47
D-LEMA [21] 0.55 0.60 0.32 0.36 0.82 0.39 0.42 0.36 0.37 0.47 0.47
PADL [19] 0.73 0.65 0.44 0.45 0.93 0.45 0.45 0.36 0.42 0.63 0.55
MaDL [11] 0.61 0.60 0.34 0.36 0.86 0.37 0.47 0.36 0.37 0.49 0.48
Ours 0.74 0.71 0.52 0.55 0.94 0.47 0.54 0.44 0.56 0.62 0.61

serene emotions associated with the sculpture. The semantic infor-
mation highlighted by our model’s learned annotator tendencies
largely corresponds with expected preferences, further validating
our model’s effectiveness in interpreting multi-annotator tenden-
cies.

5.5 Ablation Study
We conducted an ablation study to evaluate the key novel modules,
i.e., the query-based annotator modeling and multiple annotator-
specific classifiers. In the former, we remove Q-Former to the Base
model; in the latter, we only use a unified classifier (w/ U-cls). As
shown in Table 5, either of these decreases the overall performance,

highlighting their effectiveness and reasonability in the architec-
ture.

In addition, we also compared the majority voting consensus
label training results (Pre-mv) with the majority voting results after
modeling individual annotators (Post-mv). Detail setting refers to
supplementary material. As shown in Table 5, the performance
after individual annotator modeling significantly outperforms the
end-to-end majority voting training results on the AMER dataset.
Combined with Table 2, which shows high accuracy for the first 10
annotators and low accuracy for the last 3 annotators, we attribute
this improvement to the dataset’s distinct subjective patterns be-
tween majority and minority groups. This validates our hypothesis
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Table 4: DIC scores to evaluate inter-annotator tendency dis-
crepancy patterns on STREET and AMER datasets, lower
values indicate better tendency preservation. -Ha, -He, -Sa,
-Li, and -Or represents five perspectives of STREET dataset:
happiness, healthiness, safety, liveliness, and orderliness.

Datasets D-LEMA PADL MaDL Ours

S-Ha 0.62 0.48 0.45 0.43
S-He 0.59 0.52 0.45 0.38
S-Sa 0.36 0.32 0.29 0.24
S-Li 0.51 0.43 0.39 0.27
S-Or 0.61 0.57 0.59 0.54
AMER 0.42 0.36 0.31 0.23

Table 5: Ablation study. The average performance of replac-
ing some modules is compared in individual annotator mod-
eling, as well as a performance comparison of label aggre-
gation with and without individual annotator modeling. All
are evaluated by accuracy.

Method S-Ha S-He S-Sa S-Li S-Or AMER

Base 0.42 0.47 0.47 0.53 0.47 0.28
w/ U-cls 0.50 0.56 0.49 0.56 0.49 0.69

Pre-mv 0.62 0.62 0.56 0.58 0.60 0.43
Post-mv 0.62 0.58 0.61 0.59 0.62 0.60

Average 0.63 0.64 0.58 0.62 0.61 0.92

that the model effectively learns individual tendencies, providing
additional information to enhance label aggregation performance.
In contrast, the STREET dataset shows less pronounced improve-
ments. Analysis of Table 3 suggests that the modeled annotator
tendencies in this dataset are more dispersed, affecting the consen-
sus label aggregation results.

6 CONCLUSION
This paper proposes an explainable framework QuEMAT and con-
structs two datasets, AMER and STREET. Compared to existing
methods, our approach better models the label distribution of each
annotator by leveraging both individual annotator modeling and
inter-annotator correlations. Additionally, we provide interpretive
clues to reveal the behavior of each annotator. The extensive exper-
iments verified the effectiveness of our approach compared with
existing methods. After research, we found that through modeling
the behavior patterns of individual annotators, we can gain more
information about the annotator’s tendency, thereby helping to
better implement specific tasks.
Limitations.Multi-annotator tendency learning needs sufficient
samples from a single annotator. This is not always the case, es-
pecially when crowd-workers are employed for annotation. The
required number of annotations by a single annotator is to be ex-
plored.
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