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ABSTRACT
Multi-annotator learning has emerged as an important research di-
rection for capturing diverse perspectives in subjective annotation
tasks. Typically, due to the large scale of datasets, each annotator
can only label a subset of samples, resulting in incomplete (or miss-
ing) annotations per annotator. Traditional methods generally skip
model updates for missing parts, leading to inefficient data utiliza-
tion. In this paper, we propose a novel similarity-weighted semi-
supervised learning framework (SimLabel) that leverages inter-
annotator similarities to generate weighted soft labels. This ap-
proach enables the prediction, utilization, and updating of miss-
ing parts rather than discarding them. Meanwhile, we introduce
a confidence assessment mechanism combining maximum prob-
ability with entropy-based uncertainty metrics to prioritize high-
confidence predictions to impute missing labels during training
as an iterative refinement pipeline, which continuously improves
both inter-annotator similarity estimates and individual model per-
formance. We contribute a new video emotion recognition dataset,
AMER2, with higher missing rates. Experimental results demon-
strate the effectiveness of our method.

CCS CONCEPTS
• Computing methodologies → Semi-supervised learning
settings; Machine learning; Multi-task learning.

KEYWORDS
Multi-annotator Learning, Missing Labels, Soft Label, Annotator
Similarity, Semi-supervision

1 INTRODUCTION
Multi-annotator learning (MAL) has recently emerged as an impor-
tant research direction [28], aiming to build independent models for
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Figure 1: Comparisons. Three annotators label a video sam-
ple with different annotations, with the third annotator’s
label missing. (a) In existing methods, the predicted label
distribution 𝑝3 from annotator 3’s model 𝑀3 lacks supervi-
sion due to the missing label, resulting in the model training
being skipped without updates. (b) In contrast, our proposed
method leverages similarities of annotators’ labeling pat-
terns derived from the dataset to generate a soft label 𝑝𝑠𝑜 𝑓 𝑡
that closely approximates annotator 3’s true label. This is
achieved by applying similarity-weighted aggregation to the
predictions 𝑝1 and 𝑝1 from other annotator models, enabling
semi-supervised updating of models with missing labels.

each annotator to capture their different labeling patterns. MAL has
gained popularity due to its broad applicability in crowdsourcing-
driven tasks, such as emotion recognition, medical diagnosis, and
industrial manufacturing.
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MAL frequently faces the challenge of missing or incomplete
labels. This stems from the nature of crowdsourcing, where an-
notators are typically assigned portions of data rather than entire
datasets to enhance annotation efficiency [14]. The problem be-
comes particularly acute in large-scale datasets, where obtaining
complete annotations from every expert would be prohibitively
expensive or impractical, where annotators may only label a subset
of the data due to time constraints, domain expertise limitations,
or resource allocation strategies.

Existing MAL methods generally ignore the challenge of missing
labels in multi-annotator learning. Traditional approaches to this
problem often just resort to simply discarding instances with miss-
ing labels during the training of annotator-specific models, leading
to a low data utilization rate and a potential risk of model overfit-
ting for large missing labels. To address this limitation, we propose
a novel similarity-weighted semi-supervised learning framework
(SimLabel). Our method calculates pairwise similarities between
annotators’ labeling patterns and uses these similarity scores to
generate weighted soft labels for missing annotations.

Specifically, consider the example in Figure 1, which involves
three annotators (i.e., 𝐴1, 𝐴2, and 𝐴3). For a given sample, 𝐴1 and
𝐴2 provide emotion labels, while 𝐴3’s annotation is missing. As
shown in Figure 1(a), existing approaches train separate models
(i.e., 𝑀1, 𝑀2, and 𝑀3) for each annotator and predict individual
label distributions (i.e., 𝑝1, 𝑝2, and 𝑝3, respectively) for the same
video sample. Typically, each annotator model is trained using su-
pervised learning from each label to capture individual annotators’
annotation patterns. However, when encountering missing labels,
such as when 𝐴3’s label is absent, existing methods directly skip
𝑀3’s model updates due to the lack of supervision. While𝑀1 and
𝑀2 continue to be updated because they have corresponding labels.
This wastes valuable data utilization opportunities. Repeated appli-
cation of this practice results in low data utilization efficiency and
potentially increases the risk of overfitting for annotator models
with numerous missing labels.

In contrast, our method proposed in (b) of Figure 1 leverages
Cohen’s kappa coefficient [20] to calculate the differences between
multiple annotators’ labeling patterns in the dataset, deriving a sim-
ilarity matrix that we visualize in a similarity space. Compared to
the relationship between𝐴3 and𝐴2,𝐴3 and𝐴1 demonstrate greater
similarity, indicating they frequently exhibit high consistency when
annotating the same samples. Therefore, when 𝐴3’s label is miss-
ing, 𝐴1’s label carries high weight in representing 𝐴3’s potential
annotation because they are closer in the statistical similarity space.
Based on this principle, when 𝐴3’s label is missing, we calculate
the similarity weights of other annotators 𝐴1 and 𝐴2 relative to 𝐴3,
then weight these with their predicted label distributions 𝑝1 and
𝑝2 to obtain a similarity-weighted soft label 𝑝𝑠𝑜 𝑓 𝑡 . We use this as
the corresponding label for 𝐴3’s predicted label distribution 𝑝3 to
update the annotator model𝑀3. This approach implements a form
of semi-supervision, avoiding the low data utilization efficiency
and potential overfitting risks caused by skipping model updates
due to a lack of supervision when labels are missing.

Meanwhile, we introduce a confidence assessment mechanism
for the similarity-weighted soft labels. This mechanism integrates
both maximum probability values and entropy-based uncertainty

metrics to provide comprehensive confidence estimates. If the con-
fidence score exceeds a predetermined threshold, indicating high
reliability of the generated soft label, it is imputed into the original
dataset to recalculate the inter-annotator similaritymatrix. Through
this mechanism, we establish a self-reinforcing cycle that continu-
ously refines the inter-annotator similarity relationships and the
individual annotator models’ ability, leading to progressively more
accurate predictions throughout the training process.

To validate the effectiveness of our method, we additionally intro-
duce AMER2, a new video emotion recognition dataset with higher
missing rates than the previous AMER dataset [28]. Compared to
AMER’s overall average missing rate of 69.6%, AMER2 reaches an
overall average missing rate of 79.0%, with one annotator’s missing
labels reaching an extreme 91.3%. Our work makes the following
key contributions:

• We propose a novel approach to address the issue of
multi-annotator learning with missing labels. This ap-
proach leverages inter-annotator similarities to generate
weighted soft labels, enabling the utilization and updating
of missing parts rather than skipping them. This, in turn,
improves data utilization and leads to better performance.

• We introduce a confidence-driven mechanism. This
mechanism combines themaximumprobabilitywith entropy-
based uncertaintymeasures to prioritize high-confidence pre-
dictions to impute missing labels during training as an itera-
tive refinement pipeline, which continuously improves both
inter-annotator similarity estimates and individual model
performance.

• We specifically construct a new dataset, AMER2, with a
high proportion of missing labels to better mimic real-world
annotation patterns. Extensive experiments demonstrate the
effectiveness of our method, which achieves better perfor-
mance under extreme missing conditions.

2 RELATEDWORK
2.1 Multi-label Learning with Missing Labels
Missing labels represent a significant challenge in machine learning,
with considerable research focused on addressing this issue specif-
ically in the multi-label learning context. In multi-label learning,
each instance can belong to multiple categories simultaneously,
and the absence of certain category annotations creates distinct
challenges compared to multi-class classification.

Bucak et al. [2] pioneered work in this area by introducing a
ranking loss-based approach for handling incomplete class assign-
ments in multi-label learning. Their method demonstrated the fea-
sibility of learning effective classifiers despite missing annotations.
Building on this foundation, Wu et al. [21] proposed a comprehen-
sive framework that leverages matrix completion techniques to
recover missing labels, utilizing both feature and label correlations
to improve performance. This approach recognizes the inherent
relationships between labels, a concept that influences our work’s
exploration of annotator relationships.

The concept of weak labels was explored by Sun et al. [17],
who addressed scenarios where labels are incomplete but the spe-
cific missing labels are unknown. Their semi-supervised approach
demonstrated how partial information could be effectively utilized
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Table 1: Label statistics and missing rates of the AMER2 dataset compared to the AMER dataset. For each annotator, the number
of labeled samples, the corresponding missing rate (%), as well as the average data, and the total number of samples are reported.
AMER contains 13 annotators while AMER2 contains 10 annotators, denoted as 𝐴𝑘 .

Number of samples 𝐴1 𝐴2 𝐴3 𝐴4 𝐴5 𝐴6 𝐴7 𝐴8 𝐴9 𝐴10 𝐴11 𝐴12 𝐴13 Average Total

AMER 1096 1031 1022 1036 1012 970 1064 1049 1060 1062 5187 5197 5202 1999.1 5207
AMER2 545 538 201 557 493 545 346 544 542 545 - - - 485.6 2311

Missing rate (%) 𝐴1 𝐴2 𝐴3 𝐴4 𝐴5 𝐴6 𝐴7 𝐴8 𝐴9 𝐴10 𝐴11 𝐴12 𝐴13 Average -

AMER 79.0 80.2 80.4 80.1 80.6 81.4 79.6 79.9 79.6 79.6 0.4 0.2 0.1 69.6 -
AMER2 76.4 76.7 91.3 75.9 78.7 76.4 85.0 76.5 76.5 76.4 - - - 79.0 -

for learning. Similarly, Yu et al. [26] introduced feature-induced
partial multi-label learning for scenarios with only partially known
positive labels, showing how feature information can guide label
completion.

Advancing these ideas, Xu et al. [22] applied matrix completion
with side information to speed up multi-label learning with missing
labels, while Durand et al. [4] developed deep convolutional neural
networks for multi-label classification with partial labels. Liu and
Dietterich [13] approached the problem from a different angle,
using a conditional multinomial mixture model for superset label
learning, addressing cases where only a set of possible labels is
known.

Recent advances include work by Yang et al. [25] on supervised
learning of semantics-preserving hash with deep convolutional
neural networks, Zhang and Wu’s [29] comprehensive review of
multi-label learning algorithms, and Kapoor et al.’s [10] applica-
tion of Bayesian compressed sensing to multilabel classification.
Huang and Zhou [8] explored exploiting label correlations locally
for multi-label learning. Zhan and Zhang [27] proposed inductive
semi-supervised multi-label learning with co-training, and Huang
et al. [7] improved multi-label classification with missing labels by
learning label-specific features. Finally, Jing et al. [9] introduced
semi-supervised low-rank mapping learning for multi-label classi-
fication.

While these approaches have significantly advanced our under-
standing of learning with missing labels, they primarily focus on
multi-label scenarios where instances can belong to multiple cate-
gories simultaneously. They do not address the unique challenges of
multi-annotator learning, where different annotators may provide
conflicting yet valid perspectives on the same instance, and where
preserving annotator-specific characteristics is essential.

2.2 Multi-annotator Learning with Missing
Labels

Unlike multi-label learning with missing labels, the problem of miss-
ing labels in multi-annotator learning has received comparatively
little attention, despite its practical importance. In multi-annotator
learning, the goal is to model individual annotator labeling patterns
rather than simply aggregating annotations to determine a single
ground truth.

The seminal work by Yan et al. [24] on learning frommultiple an-
notators with varying expertise addresses annotator modeling but
focuses primarily on complete annotation scenarios. Their approach

models annotator expertise to improve classification performance
but does not specifically address the challenges of missing annota-
tions. Davani et al. [3] moved beyond majority voting in subjective
annotations, acknowledging the importance of preserving disagree-
ments, but did not provide a comprehensive framework for learning
with missing annotator labels.

Li et al. [11] proposed learning from multiple annotators by
incorporating instance features. Tanno et al. [18] focused on learn-
ing from noisy labels through regularized estimation of annotator
confusion. Guan et al. [5] demonstrated that modeling individual
labelers improves classification, and Shah et al. [16] explored mech-
anisms for self-correction in crowdsourcing. Rodrigues et al. [15]
proposed deep learning from crowds, while Yan et al. [23] modeled
annotator expertise when everybody knows a bit of something.
Albarqouni et al. [1] introduced AggNet for deep learning from
crowds for mitosis detection in breast cancer histology images.

While these works have contributed valuable insights to multi-
annotator learning, none have specifically addressed the challenge
of effectively training annotator-specific models when facing sub-
stantial missing labels. Most existing approaches either focus on
aggregating annotations to produce a single ground truth or treat
annotators as completely separate entities without leveraging their
interrelationships to address missing labels, and simply skip anno-
tator model updates when labels are missing.

Our work fills this critical gap by proposing a framework that
leverages the similarity relationships between annotators to achieve
annotatormodel updateswhen labels aremissing rather than simply
skipping. By introducing this similarity-based soft constraint for
cases of missing labels, our approach avoids the low data utilization
efficiency and potential overfitting risks caused by skipping model
updates due to a lack of supervision when labels are missing.

3 DATASET CONSTRUCTION
This paper introduces a new video emotion recognition dataset,
AMER2, which is an extended version of the AMER dataset [28].
The AMER dataset contains 5,207 video samples and provides rich
per-annotator labels to meet the requirements of multi-annotator
tendency learning [28].

Unlike AMER, AMER2 provides an additional 2,311 samples
and sparse per-annotator labels, with the intention of validating
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Figure 2: The main framework of SimLabel. For datasets with missing labels, annotator similarity is calculated via the Cohen’s
kappa coefficient (darker colors indicate higher similarity). Using video sample𝑉 withmissing label from𝐴𝑛 : Multiple annotator-
specific models process 𝑉 to produce label distributions. Labeled predictions (𝑝1, 𝑝2) are supervised through cross-entropy
loss with ground truth labels (𝑦1, 𝑦2). Unlabeled predictions (𝑝𝑛) is constrained via KL divergence loss with a soft label (𝑝𝑠𝑜 𝑓 𝑡 ),
generated as a similarity-weighted combination of 𝑝1 and 𝑝2 using weights𝑊1 and𝑊2 derived from annotator similarities to 𝐴𝑛 .

the effectiveness of our proposed method under more challeng-
ing missing conditions. In AMER2, most samples focus on single-
person videos with relatively complete speech content, sourced
from movies and TV series.

During the annotation process, we utilize the Label Studio toolkit
[19] and hire multiple annotators who are masters or PhD students
in our labs. To ensure annotation quality, these annotators first
undergo preliminary exams. In these exams, we provide 10 samples
and ask the annotators to select the most likely label from 8 candi-
date labels: worry, happiness, neutral, anger, surprise, sadness, other,
and unknown. These samples were previously annotated by five
experts and have obtained five-agreement labels. Annotators who
fail to pass the preliminary exam are removed from the annotation
pool. After that, we retained 10 annotators, and each annotator com-
pleted the task in approximately two weeks, with scheduled breaks
to maintain annotation quality. Finally, each annotator provided
approximately 201 to 557 labels.

Table 1 provides statistics for AMER and AMER2. From this table,
we observe that AMER2 has an overall averagemissing rate of 79.0%,
with one annotator’s missing labels reaching an extreme of 91.30%,
which is higher than AMER’s overall average missing rate of 69.6%.
Therefore, AMER2 increases the proportion of missing labels to
better mimic real-world scenarios with sparse per-annotator labels.
In this paper, we conduct experiments on both datasets, aiming
to validate the effectiveness of our method under variable missing
rates.

3.1 Overview
We illustrate our proposed SimLabel through two parts: the main
framework and confidence cycling. Based on the video emotion
classification task, the main framework primarily describes how

SimLabel generates soft labels for missing labels through similarity
weights as semi-supervised constraints for annotator models, as
shown in Figure 2. Confidence cycling discusses how to dynamically
update the annotator similarity matrix by calculating confidence
for the generated soft labels for missing annotations, building upon
the main framework, as illustrated in Figure 3.

3.2 Main Framework
Wepropose a novel approach to address the issue of multi-annotator
learning with missing labels. As shown in Figure 2, given a video
input 𝑉 from a dataset with missing labels, multiple annotators 𝐴𝑘

(𝑘 = 1, . . . , 3) provide different annotations for video samples. Often,
not all annotators label each sample, resulting in missing labels—a
common phenomenon in real-world scenarios. In this example, for
emotion assessment in the video, 𝐴1 gives the label ‘neutral’, 𝐴2
gives the label ‘sad’, while𝐴3 does not give the label, i.e, annotation
is missing.

The input video is processed by separate classificationmodels𝑀𝑘

for each annotator, designed to learn individual labeling patterns.
These models can have diverse architectures, such as Gaussian
distribution fitting architecture (PADL [12]), confusion matrix ar-
chitecture (MaDL [6]), or query-based architecture (QuMATL [28]),
etc. Each model produces label distribution predictions 𝑝𝑘 .

For annotators (𝐴1 and 𝐴2) with labels, we update their respec-
tive models (𝑀1 and𝑀2) through supervised learning by computing
cross-entropy loss with their corresponding labels 𝑦1 and 𝑦2:

Lce (𝑝𝑘 , 𝑦𝑘 ) = −𝑦𝑘 log(𝑝𝑘 ), (1)
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where each annotator𝐴𝑘 has predicted probabilities 𝑝𝑘 ∈ [0, 1]𝐶 ,
reference labels 𝑦𝑘 ∈ {0, 1}𝐶 in one-hot vector representation for
annotators with labels. 𝐶 is the number of classes.

For the annotator (𝐴3) without the label, we update model 𝑀3
through semi-supervised learning by computing Kullback-Leibler
(KL) Divergence loss with the generated soft label 𝑝𝑠𝑜 𝑓 𝑡 :

Lkl (𝑝3, 𝑝𝑠𝑜 𝑓 𝑡) = 𝐷KL (𝑝3 | |𝑝𝑠𝑜 𝑓 𝑡), (2)

where 𝑝𝑠𝑜 𝑓 𝑡 ∈ [0, 1]𝐶 is the generated similarity-weighted soft
label for the annotator without the label, and | | indicates divergence
between the two distributions.

The total training loss Ltotal for our multi-annotator classifica-
tion model is defined as:

threshold

impute 

missing label

dataset

SimLabel Ƹ𝑝soft

Confidence

Estimation

If update

Figure 3: The confidence cycling of SimLabel. Confidence
is calculated for the soft label (𝑝𝑠𝑜 𝑓 𝑡 ) generated for missing
labels. When confidence exceeds a predetermined threshold,
the predicted label is obtained and used to impute the corre-
sponding missing label in the dataset. The annotator simi-
larity matrix derived from the dataset is iteratively updated
and utilized for soft label (𝑝𝑠𝑜 𝑓 𝑡 ) generation in subsequent
iterations.

Ltotal =
2∑︁

𝑘=1
Lce (𝑝𝑘 , 𝑦𝑘 ) + Lkl (𝑝3, 𝑝𝑠𝑜 𝑓 𝑡 ) (3)

The generation of 𝑝𝑠𝑜 𝑓 𝑡 is key to our method, based on the core
idea that annotator similarity matrices derived from statistical pat-
terns in multi-annotator datasets can inform predictions for missing
annotations, and then we leverage inter-annotator similarity cor-
relations across the entire dataset to indirectly constrain models
with missing labels through semi-supervised learning. We calculate
the similarity matrix between annotators using the Cohen’s kappa
coefficient [20] from the original dataset, where deeper colors indi-
cate greater similarity between annotators. As shown in Figure 2,
annotator 𝐴1 has higher similarity to 𝐴3 compared to 𝐴2. When
𝐴3’s label is missing, 𝐴1’s similarity weight𝑊1 will be greater than
𝐴2’s weight𝑊2. Therefore, the soft label 𝑝𝑠𝑜 𝑓 𝑡 is generated by the
weighted sum of label distribution predictions 𝑝1 and 𝑝2 with their
corresponding similarity weights𝑊1 and𝑊2:

𝑝𝑠𝑜 𝑓 𝑡 =

2∑︁
𝑘=1

𝑊𝑘𝑝𝑘 , (4)

This soft label represents the closest approximation to 𝐴3’s true
label distribution based on inter-annotator similarity distances.

Algorithm 1 The Confidence Cycling for Dynamic Annotator
Similarity Refinement
Require: Dataset D with missing labels, confidence threshold 𝑇
1: Initialize similarity matrix 𝑆𝑀 using Cohen’s kappa coefficient

on available labels
2: Initialize annotator models {𝑀1, 𝑀2, . . . , 𝑀𝑛}
3: for each training epoch do
4: for each sample with missing labels do
5: Generate similarity-weighted soft label:

𝑝𝑠𝑜 𝑓 𝑡 =
∑
𝑘 𝑤𝑘𝑝𝑘

6: Calculate confidence:
𝑐𝑜𝑛𝑓 = max(𝑝𝑠𝑜 𝑓 𝑡 ) × (1 − 𝐻𝑛𝑜𝑟𝑚 (𝑝𝑠𝑜 𝑓 𝑡 ))

7: if 𝑐𝑜𝑛𝑓 ≥ 𝑇 then
8: Extract predicted label:

𝑦𝑝𝑟𝑒𝑑 = argmax(𝑝𝑠𝑜 𝑓 𝑡 )
9: Impute 𝑦𝑝𝑟𝑒𝑑 into dataset for corresponding missing

annotation
10: Recalculate annotator similarity matrix 𝑆𝑀 using up-

dated dataset
11: end if
12: Update annotator models using supervised and semi-

supervised losses
13: end for
14: end for
Ensure: Refined similarity matrix 𝑆𝑀 , imputed dataset, trained

annotator models

3.3 Confidence Cycling
Building on the main framework, we introduce a confidence as-
sessment mechanism for the similarity-weighted soft labels to dy-
namically update the annotator similarity matrix and enhance this
semi-supervision learning approach. This mechanism integrates
both maximum probability values and entropy-based uncertainty
metrics to provide comprehensive confidence estimates and identify
highly reliable soft labels.

As shown in Figure 3, if the confidence score exceeds a predeter-
mined threshold, indicating high reliability of the generated soft la-
bel, the predicted label will impute the corresponding missing labels
of the original dataset to recalculate the inter-annotator similarity
matrix. Through this mechanism, we establish a self-reinforcing
cycle that continuously refines the inter-annotator similarity rela-
tionships and the individual annotator models’ ability, leading to
progressively more accurate predictions throughout the training
process.

Confidence Calculation. As shown in Algorithm 1, for the
similarity-weighted soft labels 𝑝𝑠𝑜 𝑓 𝑡 generated for missing anno-
tations, we perform additional confidence calculations to enhance
our semi-supervised method. Our confidence measure combines
maximum probability with normalized entropy to provide a com-
prehensive assessment of prediction reliability:

𝑐𝑜𝑛𝑓 = max(𝑝𝑠𝑜 𝑓 𝑡 ) × (1 − 𝐻𝑛𝑜𝑟𝑚 (𝑝𝑠𝑜 𝑓 𝑡 )), (5)
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Table 2: The accuracy metric is to evaluate annotator modeling performance through comparing exsting approach (represent
by ‘Annotator model architecture - Skip’) and our proposed SimLabel (represent by ‘Annotator model architecture - Ours’ for
only main framework, represent by ‘Annotator model architecture - Ours + Confidence’ for main framework with confidence
cycling) on the AMER2 dataset for each annotator 𝐴𝑘 , k = 1, . . . , 10, as well as report the average performance (Avg). Higher is
better.

Methods 𝐴1 𝐴2 𝐴3 𝐴4 𝐴5 𝐴6 𝐴7 𝐴8 𝐴9 𝐴10 Avg

PADL - Skip 0.81 0.84 0.82 0.87 0.78 0.80 0.78 0.84 0.80 0.79 0.81
PADL - Ours 0.84 0.85 0.83 0.89 0.82 0.81 0.82 0.85 0.82 0.83 0.84
PADL - Ours + Confidence 0.86 0.87 0.84 0.90 0.84 0.83 0.85 0.86 0.85 0.86 0.86
MaDL - Skip 0.84 0.83 0.82 0.86 0.81 0.82 0.80 0.82 0.85 0.84 0.83
MaDL - Ours 0.87 0.84 0.85 0.87 0.83 0.85 0.82 0.86 0.86 0.85 0.85
MaDL - Ours + Confidence 0.89 0.86 0.88 0.88 0.86 0.87 0.84 0.88 0.88 0.87 0.87
QuMATL - Skip 0.86 0.83 0.87 0.84 0.86 0.87 0.88 0.83 0.85 0.86 0.86
QuMATL - Ours 0.89 0.85 0.90 0.86 0.89 0.88 0.91 0.85 0.87 0.89 0.88
QuMATL - Ours + Confidence 0.91 0.87 0.92 0.88 0.91 0.90 0.93 0.86 0.90 0.91 0.90

Table 3: The accuracy metric is to evaluate annotator modeling performance through comparing exsting approach (represent
by ‘Annotator model architecture - Skip’) and our proposed SimLabel (represent by ‘Annotator model architecture - Ours’ for
only main framework, represent by ‘Annotator model architecture - Ours + Confidence’ for main framework with confidence
cycling) on the annotators of AMER dataset for each annotator 𝐴𝑘 , k = 1, . . . , 13, as well as report the average performance
(Avg). Higher is better.

Methods 𝐴1 𝐴2 𝐴3 𝐴4 𝐴5 𝐴6 𝐴7 𝐴8 𝐴9 𝐴10 𝐴11 𝐴12 𝐴13 Avg

PADL - Skip 0.89 0.90 0.88 0.93 0.87 0.91 0.86 0.94 0.89 0.88 0.47 0.54 0.35 0.80
PADL - Ours 0.91 0.92 0.90 0.94 0.90 0.92 0.89 0.95 0.91 0.91 0.55 0.61 0.45 0.83
PADL - Ours + Confidence 0.92 0.93 0.91 0.95 0.91 0.93 0.90 0.96 0.92 0.93 0.59 0.65 0.50 0.85
MaDL - Skip 0.93 0.91 0.90 0.89 0.90 0.88 0.90 0.89 0.87 0.97 0.50 0.53 0.37 0.80
MaDL - Ours 0.95 0.92 0.92 0.91 0.92 0.90 0.92 0.92 0.90 0.98 0.59 0.60 0.48 0.84
MaDL - Ours + Confidence 0.96 0.93 0.93 0.92 0.93 0.91 0.93 0.93 0.91 0.98 0.64 0.65 0.53 0.86
QuMATL - Skip 0.94 0.93 0.93 0.94 0.94 0.92 0.93 0.95 0.93 0.93 0.59 0.61 0.40 0.84
QuMATL - Ours 0.96 0.94 0.95 0.95 0.95 0.94 0.95 0.96 0.95 0.95 0.68 0.69 0.52 0.88
QuMATL - Ours + Confidence 0.97 0.95 0.96 0.96 0.96 0.95 0.96 0.97 0.96 0.96 0.72 0.73 0.57 0.89

where max(𝑝𝑠𝑜 𝑓 𝑡 ) is the maximum probability value in the dis-
tribution, and 𝐻𝑛𝑜𝑟𝑚 (𝑝𝑠𝑜 𝑓 𝑡 ) is the normalized entropy calculated
as:

𝐻𝑛𝑜𝑟𝑚 (𝑝𝑠𝑜 𝑓 𝑡 ) =
𝐻 (𝑝𝑠𝑜 𝑓 𝑡 )
𝐻𝑚𝑎𝑥

, (6)

The entropy𝐻 (𝑝𝑠𝑜 𝑓 𝑡 ) measures the uncertainty across the entire
probability distribution:

𝐻 (𝑝𝑠𝑜 𝑓 𝑡 ) = −
𝐶∑︁
𝑐=1

𝑝𝑠𝑜 𝑓 𝑡,𝑐 log(𝑝𝑠𝑜 𝑓 𝑡,𝑐 ), (7)

where 𝑝𝑠𝑜 𝑓 𝑡,𝑐 is the probability assigned to class 𝑐 , and 𝐶 is the
total number of classes. The maximum possible entropy 𝐻𝑚𝑎𝑥 =

log(𝐶) occurs when the distribution is uniform.
This formulation requires predictions to have both high maxi-

mum probability and low normalized entropy (concentrated distri-
bution) to achieve high confidence scores. This provides a compre-
hensive assessment of prediction reliability by balancing two key
factors: (1) The maximum probability term max(𝑝𝑠𝑜 𝑓 𝑡 ) captures

the model’s confidence in the most likely class. (2) The normalized
entropy term 𝐻𝑛𝑜𝑟𝑚 (𝑝𝑠𝑜 𝑓 𝑡 ) measures the uncertainty across the
entire distribution, with lower values indicating more concentrated
(certain) predictions.

Dynamic Refinement Process. As shown in Algorithm 1,
when the calculated confidence exceeds a predetermined threshold
𝑇 (Algorithm 1, line 7), indicating that the generated soft label has
high reliability, the predicted label 𝑦𝑝𝑟𝑒𝑑 is extracted and incorpo-
rated into the location of missing label in the original dataset (lines
8-9). The annotator similarity matrix 𝑆𝑀 is then recalculated using
the updated dataset with newly imputed labels (line 10).

This process facilitates more accurate establishment of similarity
relationships between annotators in cases of missing labels. As
training progresses and missing labels meeting confidence criteria
are incorporated, a virtuous cycle emerges, continuously refining
the similarity relationships between annotators. The dynamic re-
finement allows each annotator model to more accurately capture
its specific annotation patterns, even when starting from datasets
with significant numbers of missing annotations.
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Table 4: Randomly removing annotations at different missing ratios (20%, 30%, and 40%) is to simulate label missing scenarios
on the STREET dataset, -Ha, -He, -Sa, -Li, and -Or represent five perspectives of STREET dataset: happiness, healthiness, safety,
liveliness, and orderliness. Here, we only show the average performance of 10 annotators’ modeling. This is also applied
to AMER2 and AMER datasets to increase the missing rates to validate our approach. Here, the accuracy metric is used for
evaluation. Higher is better.

Methods STREET-Ha STREET-He STREET-Sa STREET-Li STREET-Or AMER AMER2

20% - PADL - Skip 0.53 0.52 0.46 0.51 0.50 0.71 0.73
20% - PADL - Ours 0.56 0.55 0.49 0.54 0.53 0.74 0.76
20% - PADL - Ours + Confidence 0.58 0.57 0.52 0.56 0.55 0.77 0.78
20% - MaDL - Skip 0.56 0.54 0.51 0.53 0.56 0.76 0.77
20% - MaDL - Ours 0.59 0.57 0.54 0.56 0.59 0.79 0.80
20% - MaDL - Ours + Confidence 0.61 0.59 0.56 0.58 0.61 0.82 0.82
20% - QuMATL - Skip 0.61 0.60 0.55 0.58 0.59 0.81 0.82
20% - QuMATL - Ours 0.64 0.62 0.58 0.61 0.62 0.86 0.85
20% - QuMATL - Ours + Confidence 0.66 0.64 0.60 0.63 0.64 0.88 0.87

30% - PADL - Skip 0.48 0.47 0.41 0.46 0.45 0.65 0.67
30% - PADL - Ours 0.52 0.50 0.45 0.50 0.48 0.70 0.71
30% - PADL - Ours + Confidence 0.54 0.53 0.48 0.52 0.51 0.75 0.74
30% - MaDL - Skip 0.54 0.52 0.48 0.49 0.54 0.72 0.70
30% - MaDL - Ours 0.57 0.55 0.51 0.53 0.57 0.75 0.74
30% - MaDL - Ours + Confidence 0.60 0.57 0.54 0.55 0.59 0.78 0.77
30% - QuMATL - Skip 0.58 0.57 0.52 0.55 0.56 0.79 0.78
30% - QuMATL - Ours 0.62 0.60 0.56 0.58 0.60 0.82 0.82
30% - QuMATL - Ours + Confidence 0.64 0.62 0.58 0.61 0.62 0.85 0.84

40% - PADL - Skip 0.44 0.42 0.37 0.43 0.41 0.60 0.61
40% - PADL - Ours 0.48 0.46 0.42 0.47 0.45 0.64 0.66
40% - PADL - Ours + Confidence 0.51 0.49 0.45 0.50 0.48 0.67 0.69
40% - MaDL - Skip 0.50 0.48 0.43 0.50 0.47 0.63 0.65
40% - MaDL - Ours 0.54 0.52 0.47 0.54 0.51 0.66 0.69
40% - MaDL - Ours + Confidence 0.57 0.54 0.50 0.56 0.53 0.71 0.72
40% - QuMATL - Skip 0.55 0.53 0.49 0.52 0.54 0.73 0.74
40% - QuMATL - Ours 0.59 0.57 0.53 0.56 0.58 0.77 0.78
40% - QuMATL - Ours + Confidence 0.62 0.59 0.56 0.59 0.60 0.80 0.81

The effectiveness of this approach lies in its ability to lever-
age high-confidence predictions to bootstrap the learning process,
creating a self-improving system where each iteration potentially
enhances the quality of both the similarity matrix and the generated
soft labels for remaining missing annotations.

4 EXPERIMENT
We conduct extensive experiments to compare our proposed SimLa-
bel (i.e., using only the main framework of the similarity-weighted
soft label, and using both the main framework and confidence cy-
cling) with existing approaches (i.e., directly skipping training on
annotator models in case of missing labels), evaluating the perfor-
mance of multi-annotator modeling. To verify the effectiveness and
applicability of SimLabel, we select different annotator model ar-
chitectures: Gaussian distribution fitting architecture (PADL [12]),
confusionmatrix architecture (MaDL [6]), and query-based architec-
ture (QuMATL [28]). We evaluate our method on both the AMER2
and AMER datasets containing real missing labels, as well as on the
STREET dataset with simulated missing labels at various missing
ratios, using accuracy as the evaluation metric [28].

4.1 Implementation Details
We use Cohen’s kappa coefficient [20] to calculate the annotator
similarity matrix of multi-annotator datasets. For datasets in the
experiment, the input image and video are resized to 224×224 and
further normalized. The different annotator model architectures all
follow their original settings. During training, we use the AdamW
optimizer with an initial learning rate of 1e-4, weight decay of
0.01, and a maximum gradient norm of 1.0 for gradient clipping. A
linear warmup strategy is applied for the first 20% steps followed by
cosine learning rate decay. We set the maximum number of epochs
to 200, with early stopping (patience being 25) to prevent overfitting.
To accelerate training, the model is trained using distributed data
parallel (DDP) on four NVIDIA V100 GPUs.

4.2 Datasets
For the dataset, we primarily utilize the newly constructed multi-
modal emotion recognition dataset AMER2, alongside the earlier
version AMER and the city impression assessment dataset STREET
[28]. AMER2 and AMER naturally contain missing labels in real-
world settings, while STREET is a complete real-world dataset.
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Therefore, for the STREET dataset, we randomly remove annota-
tions at different missing ratios to simulate annotation absence.
Similarly, we also apply this random removal procedure to AMER2
and AMER datasets to further increase missing rates and validate
the effectiveness of our approach.

4.3 Results Analysis
Table 2 and Table 3 present accuracy results for each annotator
across different annotator model architectures based on the com-
parison between our proposed SimLabel (i.e., using only the main
framework of the similarity-weighted soft label, defined as “- Ours”,
and using both the main framework and confidence cycling, defined
as “- Ours + Confidence”) with existing approaches (i.e., directly
skipping training on annotator models in case of missing labels,
defined as “- Skip”). Table 4 presents average accuracy results for
multi-annotators across different annotator model architectures at
different missing labels.

On the AMER2 dataset (Table 2), our approach using the main
framework (“- Ours”) consistently outperforms existing approaches
(“- Skip”) which directly skip training on annotator models in case
of missing labels, with average improvements of 3% for PADL, 2%
for MaDL, and 2% for QuMATL. When incorporating confidence
cycling (“- Ours + Confidence”) for our approach, we observe further
enhancements of 2% across all different architectures.

Results on the AMER dataset (Table 3) show similar patterns of
improvement. Our approach using the main framework (“- Ours”)
improves average accuracy by around 3% for PADL, MaDL, and
QuMATL compared to existing approaches (“- Skip”). With con-
fidence cycling (“- Ours + Confidence”) for our approach, these
improvements further increase to around 2%. This consistent en-
hancement across different model architectures of multi-annotator
learning validates our central hypothesis that leveraging inter-
annotator similarity provides an effective framework for addressing
missing label challenges in multi-annotator learning.

For the STREET dataset, we conducted experiments with artifi-
cially induced missing labels at rates of 20%, 30%, and 40% (Table 4).
To evaluate robustness, we also apply this random removal pro-
cedure to AMER2 and AMER datasets to further increase missing
rates and validate the effectiveness of our approach. Our approach
delivers consistent improvements across all scenarios, with average
gains of around 4-7% depending on the dataset and missing ratio.

Importantly, the relative improvement becomesmore pronounced
as the missing ratio increases, with average gains of 7% at 40% miss-
ing labels compared to 5-6% at 20%. This demonstrates that our
method is particularly valuable in scenarios with severe label spar-
sity. On the STREET dataset with its five assessment perspectives,
our approach shows uniform improvements, with the largest gains
observed for the more challenging safety perspective (Sa).

These results consistently demonstrate that leveraging annota-
tor similarity relationships through our soft label generation and
confidence cycling mechanism improves multi-annotator modeling
performance, especially in realistic scenarios with missing annota-
tions.

Table 5: Ablation studies on confidence threshold, sensitiv-
ity, and calculation ways. Top: Performance with different
confidence thresholds. Middle: Sensitivity of optimal thresh-
old across missing ratios. Bottom: Comparison of different
confidence calculation methods. They are all performed on
AMER2 dataset.

Confidence Threshold PADL MaDL QuMATL Avg

0.5 0.85 0.86 0.89 0.87
0.6 0.86 0.87 0.90 0.88
0.7 0.84 0.85 0.88 0.86
0.8 0.82 0.83 0.86 0.84

Missing Rate PADL MaDL QuMATL Best

20% 0.65 0.6 0.6 0.6-0.65
30% 0.6 0.6 0.65 0.6-0.65
40% 0.55 0.55 0.6 0.55-0.6

Confidence Calculation PADL MaDL QuMATL Avg

𝑚𝑎𝑥 (𝑝 ) 0.83 0.84 0.87 0.85
1 − 𝐻𝑛𝑜𝑟𝑚 (𝑝 ) 0.84 0.85 0.88 0.86

𝑚𝑎𝑥 (𝑝 ) × (1 − 𝐻𝑛𝑜𝑟𝑚 (𝑝 ) ) 0.86 0.87 0.90 0.88

4.4 Ablation Study
To evaluate the design choices in our confidence cycling mecha-
nism, we conduct a detailed ablation study examining confidence
threshold selection, its sensitivity to different missing rates, and the
effectiveness of different confidence formulation methods. They
are all performed on AMER2 dataset.

Confidence Threshold Selection. Table 5 (top) shows the per-
formance of our method with different confidence thresholds. The
results indicate that a threshold of 0.6 achieves the best performance
across all model architectures. Higher thresholds (0.8) lead to per-
formance degradation, likely because too few predictions meet the
criteria for updating the similarity matrix. Lower thresholds (0.5)
also perform slightly worse than 0.6, possibly due to the inclusion
of lower-quality predictions that introduce noise into the update
process.

Threshold Sensitivity Across Missing Rates. We further an-
alyze how the optimal threshold varies with different missing label
rates (Table 5, middle). Interestingly, we observe that as the miss-
ing rate increases from 20% to 40%, the optimal threshold tends to
decrease slightly. This suggests that when more labels are missing,
a slightly more lenient threshold may be beneficial to ensure suffi-
cient updates to the similarity matrix while maintaining reasonable
prediction quality.

Confidence Formulation Comparison. Finally, we evaluate
different confidence calculation methods (Table 5, bottom): (1) us-
ing only maximum probability𝑚𝑎𝑥 (𝑝), (2) using only normalized
entropy complement 1 − 𝐻𝑛𝑜𝑟𝑚 (𝑝), and (3) our proposed com-
bined approach𝑚𝑎𝑥 (𝑝) × (1 − 𝐻𝑛𝑜𝑟𝑚 (𝑝)), where 𝑝 represents the
similarity-weighted soft label probability distribution generated for
missing annotations. The results demonstrate that our combined
method consistently outperforms single-metric approaches across
all architectures, with an average performance improvement of 3%
over max(p) and 2% over entropy-only formulation. This validates



SimLabel: Similarity-Weighted Semi-supervision for Multi-annotator Learning with Missing Labels , ,

our hypothesis that effective confidence assessment should con-
sider both the strength of the dominant class prediction and the
overall distribution shape.

5 CONCLUSION
We addressed the challenge of missing labels in multi-annotator
learning through a similarity-weighted semi-supervised framework
that leverages inter-annotator relationships instead of skipping
model updates. Our approach SimLabel combines soft label gen-
eration with a confidence cycling mechanism to dynamically re-
fine inter-annotator similarity estimates. Experiments on different
datasets show consistent performance improvements under differ-
ent missing label scenarios. These results demonstrate the effective-
ness of utilizing inter-annotator similarity to address missing label
challenges. Future work could extend this framework to handle
dynamic annotator behaviors and explore its application to more
complex subjective annotation domains such as medical imaging.
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